43 KiB
gMock Cheat Sheet
Defining a Mock Class
Mocking a Normal Class
Given
class Foo {
...
virtual ~Foo();
virtual int GetSize() const = 0;
virtual string Describe(const char* name) = 0;
virtual string Describe(int type) = 0;
virtual bool Process(Bar elem, int count) = 0;
};
(note that ~Foo() must be virtual) we can define its mock as
#include "gmock/gmock.h"
class MockFoo : public Foo {
...
MOCK_METHOD(int, GetSize, (), (const, override));
MOCK_METHOD(string, Describe, (const char* name), (override));
MOCK_METHOD(string, Describe, (int type), (override));
MOCK_METHOD(bool, Process, (Bar elem, int count), (override));
};
To create a "nice" mock, which ignores all uninteresting calls, a "naggy" mock, which warns on all uninteresting calls, or a "strict" mock, which treats them as failures:
using ::testing::NiceMock;
using ::testing::NaggyMock;
using ::testing::StrictMock;
NiceMock<MockFoo> nice_foo; // The type is a subclass of MockFoo.
NaggyMock<MockFoo> naggy_foo; // The type is a subclass of MockFoo.
StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo.
Note: A mock object is currently naggy by default. We may make it nice by default in the future.
Mocking a Class Template
Class templates can be mocked just like any class.
To mock
template <typename Elem>
class StackInterface {
...
virtual ~StackInterface();
virtual int GetSize() const = 0;
virtual void Push(const Elem& x) = 0;
};
(note that all member functions that are mocked, including ~StackInterface()
must be virtual).
template <typename Elem>
class MockStack : public StackInterface<Elem> {
...
MOCK_METHOD(int, GetSize, (), (const, override));
MOCK_METHOD(void, Push, (const Elem& x), (override));
};
Specifying Calling Conventions for Mock Functions
If your mock function doesn't use the default calling convention, you can
specify it by adding Calltype(convention) to MOCK_METHOD's 4th parameter.
For example,
MOCK_METHOD(bool, Foo, (int n), (Calltype(STDMETHODCALLTYPE)));
MOCK_METHOD(int, Bar, (double x, double y),
(const, Calltype(STDMETHODCALLTYPE)));
where STDMETHODCALLTYPE is defined by <objbase.h> on Windows.
Using Mocks in Tests
The typical work flow is:
- Import the gMock names you need to use. All gMock symbols are in the
testingnamespace unless they are macros or otherwise noted. - Create the mock objects.
- Optionally, set the default actions of the mock objects.
- Set your expectations on the mock objects (How will they be called? What will they do?).
- Exercise code that uses the mock objects; if necessary, check the result using googletest assertions.
- When a mock object is destructed, gMock automatically verifies that all expectations on it have been satisfied.
Here's an example:
using ::testing::Return; // #1
TEST(BarTest, DoesThis) {
MockFoo foo; // #2
ON_CALL(foo, GetSize()) // #3
.WillByDefault(Return(1));
// ... other default actions ...
EXPECT_CALL(foo, Describe(5)) // #4
.Times(3)
.WillRepeatedly(Return("Category 5"));
// ... other expectations ...
EXPECT_EQ("good", MyProductionFunction(&foo)); // #5
} // #6
Setting Default Actions
gMock has a built-in default action for any function that returns void,
bool, a numeric value, or a pointer. In C++11, it will additionally returns
the default-constructed value, if one exists for the given type.
To customize the default action for functions with return type T:
using ::testing::DefaultValue;
// Sets the default value to be returned. T must be CopyConstructible.
DefaultValue<T>::Set(value);
// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
// T MakeT();
DefaultValue<T>::SetFactory(&MakeT);
// ... use the mocks ...
// Resets the default value.
DefaultValue<T>::Clear();
Example usage:
// Sets the default action for return type std::unique_ptr<Buzz> to
// creating a new Buzz every time.
DefaultValue<std::unique_ptr<Buzz>>::SetFactory(
[] { return MakeUnique<Buzz>(AccessLevel::kInternal); });
// When this fires, the default action of MakeBuzz() will run, which
// will return a new Buzz object.
EXPECT_CALL(mock_buzzer_, MakeBuzz("hello")).Times(AnyNumber());
auto buzz1 = mock_buzzer_.MakeBuzz("hello");
auto buzz2 = mock_buzzer_.MakeBuzz("hello");
EXPECT_NE(nullptr, buzz1);
EXPECT_NE(nullptr, buzz2);
EXPECT_NE(buzz1, buzz2);
// Resets the default action for return type std::unique_ptr<Buzz>,
// to avoid interfere with other tests.
DefaultValue<std::unique_ptr<Buzz>>::Clear();
To customize the default action for a particular method of a specific mock
object, use ON_CALL(). ON_CALL() has a similar syntax to EXPECT_CALL(),
but it is used for setting default behaviors (when you do not require that the
mock method is called). See go/prefer-on-call for a more detailed discussion.
ON_CALL(mock-object, method(matchers))
.With(multi-argument-matcher) ?
.WillByDefault(action);
Setting Expectations
EXPECT_CALL() sets expectations on a mock method (How will it be called?
What will it do?):
EXPECT_CALL(mock-object, method (matchers)?)
.With(multi-argument-matcher) ?
.Times(cardinality) ?
.InSequence(sequences) *
.After(expectations) *
.WillOnce(action) *
.WillRepeatedly(action) ?
.RetiresOnSaturation(); ?
If (matchers) is omitted, the expectation is the same as if the matchers were
set to anything matchers (for example, (_, _, _, _) for a four-arg method).
If Times() is omitted, the cardinality is assumed to be:
Times(1)when there is neitherWillOnce()norWillRepeatedly();Times(n)when there arenWillOnce()s but noWillRepeatedly(), wheren>= 1; orTimes(AtLeast(n))when there arenWillOnce()s and aWillRepeatedly(), wheren>= 0.
A method with no EXPECT_CALL() is free to be invoked any number of times,
and the default action will be taken each time.
Matchers
A matcher matches a single argument. You can use it inside ON_CALL() or
EXPECT_CALL(), or use it to validate a value directly:
| Matcher | Description |
|---|---|
EXPECT_THAT(actual_value, matcher) |
Asserts that actual_value matches |
- : :
matcher. : - |
ASSERT_THAT(actual_value, matcher)| The same as | : `EXPECT_THAT(actual_value, matcher)`, :: except that it generates a **fatal** :: failure. :
Built-in matchers (where argument is the function argument) are divided into
several categories:
Wildcard
| Matcher | Description |
|---|---|
_ |
argument can be any value of the correct type. |
A<type>() or An<type>() |
argument can be any value of type type. |
Generic Comparison
| Matcher | Description |
|---|---|
Eq(value) or value |
argument == value |
Ge(value) |
argument >= value |
Gt(value) |
argument > value |
Le(value) |
argument <= value |
Lt(value) |
argument < value |
Ne(value) |
argument != value |
IsNull() |
argument is a NULL pointer (raw or smart). |
NotNull() |
argument is a non-null pointer (raw or smart). |
Optional(m) |
argument is optional<> that contains a value |
- : : matching
m. : - |
VariantWith<T>(m)|argumentisvariant<>that holds the | : alternative of type T with a value matching `m`. :- |
Ref(variable)|argumentis a reference tovariable. | - |
TypedEq<type>(value)|argumenthas typetypeand is equal tovalue. | : You may need to use this instead of `Eq(value)` :: when the mock function is overloaded. :
Except Ref(), these matchers make a copy of value in case it's modified or
destructed later. If the compiler complains that value doesn't have a public
copy constructor, try wrap it in ByRef(), e.g.
Eq(ByRef(non_copyable_value)). If you do that, make sure non_copyable_value
is not changed afterwards, or the meaning of your matcher will be changed.
Floating-Point Matchers
| Matcher | Description |
|---|---|
DoubleEq(a_double) |
argument is a double value |
- : : approximately equal to
a_double, : : treating two NaNs as unequal. :- |
FloatEq(a_float)|argumentis afloatvalue | : approximately equal to `a_float`, :: treating two NaNs as unequal. :- |
NanSensitiveDoubleEq(a_double)|argumentis adoublevalue | : approximately equal to `a_double`, :: treating two NaNs as equal. :- |
NanSensitiveFloatEq(a_float)|argumentis afloatvalue | : approximately equal to `a_float`, :: treating two NaNs as equal. :
The above matchers use ULP-based comparison (the same as used in googletest).
They automatically pick a reasonable error bound based on the absolute value of
the expected value. DoubleEq() and FloatEq() conform to the IEEE standard,
which requires comparing two NaNs for equality to return false. The
NanSensitive* version instead treats two NaNs as equal, which is often what a
user wants.
| Matcher | Description |
|---|---|
| `DoubleNear(a_double, | argument is a double value close |
- : max_abs_error)
: toa_double` (absolute error <= : : `max_abs_error`), treating two NaNs as :: unequal. :- |
FloatNear(a_float, max_abs_error)|argumentis afloatvalue close to | : `a_float` (absolute error <= :: `max_abs_error`), treating two NaNs as :: unequal. :- |
NanSensitiveDoubleNear(a_double, |argumentis adouble` value close | - max_abs_error)
: toa_double` (absolute error <= : : `max_abs_error`), treating two NaNs as :: equal. :- |
NanSensitiveFloatNear(a_float, |argumentis afloat` value close to | - max_abs_error)
:a_float` (absolute error <= : : `max_abs_error`), treating two NaNs as :: equal. :
String Matchers
The argument can be either a C string or a C++ string object:
| Matcher | Description |
|---|---|
ContainsRegex(string) |
argument matches the given regular expression. |
EndsWith(suffix) |
argument ends with string suffix. |
HasSubstr(string) |
argument contains string as a sub-string. |
MatchesRegex(string) |
argument matches the given regular expression |
- : : with the match starting at the first character and :
: ending at the last character. :- |
StartsWith(prefix)|argumentstarts with stringprefix. | - |
StrCaseEq(string)|argumentis equal tostring, ignoring case. | - |
StrCaseNe(string)|argumentis not equal tostring, ignoring | : case. :
| StrEq(string) | argument is equal to string. |
| StrNe(string) | argument is not equal to string. |
ContainsRegex() and MatchesRegex() take ownership of the RE object. They
use the regular expression syntax defined
here. StrCaseEq(), StrCaseNe(), StrEq(),
and StrNe() work for wide strings as well.
Container Matchers
Most STL-style containers support ==, so you can use Eq(expected_container)
or simply expected_container to match a container exactly. If you want to
write the elements in-line, match them more flexibly, or get more informative
messages, you can use:
| Matcher | Description |
|---|---|
BeginEndDistanceIs(m) |
argument is a container whose |
- : :
begin()andend()iterators : : are separated by a number of :: increments matching `m`. E.g. :: `BeginEndDistanceIs(2)` or :: `BeginEndDistanceIs(Lt(2))`. For :: containers that define a :: `size()` method, `SizeIs(m)` may :: be more efficient. :- |
ContainerEq(container)| The same asEq(container)| : except that the failure message :: also includes which elements are :: in one container but not the :: other. :- |
Contains(e)|argumentcontains an element | : that matches `e`, which can be :: either a value or a matcher. :- |
Each(e)|argumentis a container where | : *every* element matches `e`, :: which can be either a value or a :: matcher. :- |
ElementsAre(e0, e1, ..., en)|argumenthasn + 1elements, | : where the *i*-th element matches :: `ei`, which can be a value or a :: matcher. :- |
ElementsAreArray({e0, e1, ..., en}), | The same asElementsAre()| ElementsAreArray(a_container), : except that the expected element :ElementsAreArray(begin, end), : values/matchers come from an :ElementsAreArray(array), or : initializer list, STL-style :ElementsAreArray(array, count): container, iterator range, or :: C-style array. :- |
IsEmpty()|argumentis an empty container | : (`container.empty()`). :- |
IsFalse()|argumentevaluates tofalse| : in a Boolean context. :- |
IsSubsetOf({e0, e1, ..., en}), |argumentmatches | IsSubsetOf(a_container), : `UnorderedElementsAre(x0, x1, :IsSubsetOf(begin, end), : ..., xk)for some subset{x0, :IsSubsetOf(array), or : x1, ..., xk}` of the expected :IsSubsetOf(array, count): matchers. : |IsSupersetOf({e0, e1, ..., en}), | Some subset ofargument|IsSupersetOf(a_container), : matches :IsSupersetOf(begin, end), :UnorderedElementsAre(expected :IsSupersetOf(array), or : matchers). :IsSupersetOf(array, count): : |IsTrue()|argumentevaluates totrue|: in a Boolean context. :- |
Pointwise(m, container),Pointwise(m, |argument` contains the same | - {e0, e1, ..., en})` : number of elements as in :
: `container`, and for all i, (the :: i-th element in `argument`, the :: i-th element in `container`) :: match `m`, which is a matcher on :: 2-tuples. E.g. `Pointwise(Le(), :: upper_bounds)` verifies that :: each element in `argument` :: doesn't exceed the corresponding :: element in `upper_bounds`. See :: more detail below. :- |
SizeIs(m)|argumentis a container whose | : size matches `m`. E.g. :: `SizeIs(2)` or `SizeIs(Lt(2))`. :- |
UnorderedElementsAre(e0, e1, ..., en)|argumenthasn + 1elements, | : and under *some* permutation of :: the elements, each element :: matches an `ei` (for a different :: `i`), which can be a value or a :: matcher. :- | `UnorderedElementsAreArray({e0, e1, ..., | The same as |
- en})
, :UnorderedElementsAre()` except : UnorderedElementsAreArray(a_container), : that the expected element :UnorderedElementsAreArray(begin, end), : values/matchers come from an :UnorderedElementsAreArray(array), or : initializer list, STL-style :UnorderedElementsAreArray(array, count): container, iterator range, or :: C-style array. :- |
UnorderedPointwise(m, container), | LikePointwise(m, container), | - `UnorderedPointwise(m, {e0, e1, ..., : but ignores the order of :
- en})
: elements. : |WhenSorted(m)| Whenargument` is sorted using | : the `<` operator, it matches :: container matcher `m`. E.g. :: `WhenSorted(ElementsAre(1, 2, :: 3))` verifies that `argument` :: contains elements 1, 2, and 3, :: ignoring order. :- |
WhenSortedBy(comparator, m)| The same asWhenSorted(m), | : except that the given comparator :: instead of `<` is used to sort :: `argument`. E.g. :: `WhenSortedBy(std\:\:greater(), :: ElementsAre(3, 2, 1))`. :
Notes:
-
These matchers can also match:
- a native array passed by reference (e.g. in
Foo(const int (&a)[5])), and - an array passed as a pointer and a count (e.g. in
Bar(const T* buffer, int len)-- see Multi-argument Matchers).
- a native array passed by reference (e.g. in
-
The array being matched may be multi-dimensional (i.e. its elements can be arrays).
-
minPointwise(m, ...)should be a matcher for::std::tuple<T, U>whereTandUare the element type of the actual container and the expected container, respectively. For example, to compare twoFoocontainers whereFoodoesn't supportoperator==, one might write:using ::std::get; MATCHER(FooEq, "") { return std::get<0>(arg).Equals(std::get<1>(arg)); } ... EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
Member Matchers
| Matcher | Description |
|---|---|
Field(&class::field, m) |
argument.field (or argument->field |
- : : when
argumentis a plain pointer) : : matches matcher `m`, where `argument` is :: an object of type _class_. :- |
Key(e)|argument.firstmatchese, which can be | : either a value or a matcher. E.g. :: `Contains(Key(Le(5)))` can verify that a :: `map` contains a key `<= 5`. :- |
Pair(m1, m2)|argumentis anstd::pairwhosefirst| : field matches `m1` and `second` field :: matches `m2`. :- |
Property(&class::property, m)|argument.property()(or | : `argument->property()` when `argument` is :: a plain pointer) matches matcher `m`, :: where `argument` is an object of type :: _class_. :
Matching the Result of a Function, Functor, or Callback
| Matcher | Description |
|---|---|
ResultOf(f, m) |
f(argument) matches matcher m, where f is a |
: : function or functor. :
Pointer Matchers
| Matcher | Description |
|---|---|
Pointee(m) |
argument (either a smart pointer or a raw |
- : : pointer) points to a value that matches matcher :
: `m`. :- |
WhenDynamicCastTo<T>(m)| whenargumentis passed through | : `dynamic_cast<T>()`, it matches matcher `m`. :
Multi-argument Matchers
Technically, all matchers match a single value. A "multi-argument" matcher is
just one that matches a tuple. The following matchers can be used to match a
tuple (x, y):
| Matcher | Description |
|---|---|
Eq() |
x == y |
Ge() |
x >= y |
Gt() |
x > y |
Le() |
x <= y |
Lt() |
x < y |
Ne() |
x != y |
You can use the following selectors to pick a subset of the arguments (or reorder them) to participate in the matching:
| Matcher | Description |
|---|---|
AllArgs(m) |
Equivalent to m. Useful as syntactic sugar in |
- : :
.With(AllArgs(m)). : - |
Args<N1, N2, ..., Nk>(m)| The tuple of thekselected (using 0-based | : indices) arguments matches `m`, e.g. `Args<1, :: 2>(Eq())`. :
Composite Matchers
You can make a matcher from one or more other matchers:
| Matcher | Description |
|---|---|
AllOf(m1, m2, ..., mn) |
argument matches all of the matchers m1 to |
- : :
mn. : - |
AnyOf(m1, m2, ..., mn)|argumentmatches at least one of the matchers | : `m1` to `mn`. :
| Not(m) | argument doesn't match matcher m. |
Adapters for Matchers
| Matcher | Description |
|---|---|
MatcherCast<T>(m) |
casts matcher m to type |
- : :
Matcher<T>. : - |
SafeMatcherCast<T>(m)| [safely | : casts](cook_book.md#casting-matchers) :: matcher `m` to type `Matcher<T>`. :- |
Truly(predicate)|predicate(argument)returns | : something considered by C++ to be :: true, where `predicate` is a function :: or functor. :
AddressSatisfies(callback) and Truly(callback) take ownership of callback,
which must be a permanent callback.
Matchers as Predicates
| Matcher | Description |
|---|---|
Matches(m)(value) |
evaluates to true if value matches m. |
- : : You can use
Matches(m)alone as a unary : : functor. :- |
ExplainMatchResult(m, value, | evaluates totrueifvaluematchesm`, | - result_listener)
: explaining the result toresult_listener. : |Value(value, m)| evaluates totrueifvaluematchesm`. |
Defining Matchers
| Matcher | Description |
|---|---|
| `MATCHER(IsEven, "") { return (arg % | Defines a matcher IsEven() to match |
- : 2) == 0; }` : an even number. :
- |
MATCHER_P(IsDivisibleBy, n, "") { | Defines a macherIsDivisibleBy(n)` | - *result_listener << "where the : to match a number divisible by
n. : - remainder is " << (arg % n); return : :
- (arg % n) == 0; }
: : |MATCHER_P2(IsBetween, a, b, | Defines a matcherIsBetween(a, b)| - std::string(negation ? "isn't" : : to match a value in the range [
a, : - "is") + " between " + :
b]. : - PrintToString(a) + " and " + : :
- PrintToString(b)) { return a <= arg : :
- && arg <= b; }` : :
Notes:
- The
MATCHER*macros cannot be used inside a function or class. - The matcher body must be purely functional (i.e. it cannot have any side effect, and the result must not depend on anything other than the value being matched and the matcher parameters).
- You can use
PrintToString(x)to convert a valuexof any type to a string.
Matchers as Test Assertions
| Matcher | Description |
|---|---|
ASSERT_THAT(expression, m) |
Generates a fatal failure if the value of expression doesn't match matcher m. |
EXPECT_THAT(expression, m) |
Generates a non-fatal failure if the value of expression doesn't match matcher m. |
Actions
Actions specify what a mock function should do when invoked.
Returning a Value
| Matcher | Description |
|---|---|
Return() |
Return from a void mock function. |
Return(value) |
Return value. If the type of value is |
- : : different to the mock function's return type, :
: `value` is converted to the latter type <i>at :: the time the expectation is set</i>, not when :: the action is executed. :- |
ReturnArg<N>()| Return theN-th (0-based) argument. | - |
ReturnNew<T>(a1, ..., ak)| Returnnew T(a1, ..., ak); a different | : object is created each time. :- |
ReturnNull()| Return a null pointer. | - |
ReturnPointee(ptr)| Return the value pointed to byptr. | - |
ReturnRef(variable)| Return a reference tovariable. | - |
ReturnRefOfCopy(value)| Return a reference to a copy ofvalue; the | : copy lives as long as the action. :
Side Effects
| Matcher | Description |
|---|---|
Assign(&variable, value) |
Assign value to variable. |
DeleteArg<N>() |
Delete the N-th (0-based) argument, |
- : : which must be a pointer. :
- |
SaveArg<N>(pointer)| Save theN-th (0-based) argument to | : `*pointer`. :- |
SaveArgPointee<N>(pointer)| Save the value pointed to by theN-th | : (0-based) argument to `*pointer`. :- |
SetArgReferee<N>(value)| Assign value to the variable referenced | : by the `N`-th (0-based) argument. :- |
SetArgPointee<N>(value)| Assignvalueto the variable pointed | : by the `N`-th (0-based) argument. :- |
SetArgumentPointee<N>(value)| Same asSetArgPointee<N>(value). | : Deprecated. Will be removed in v1.7.0. :- |
SetArrayArgument<N>(first, last)| Copies the elements in source range | : [`first`, `last`) to the array pointed :: to by the `N`-th (0-based) argument, :: which can be either a pointer or an :: iterator. The action does not take :: ownership of the elements in the source :: range. :- |
SetErrnoAndReturn(error, value)| Seterrnotoerrorand return | : `value`. :- |
Throw(exception)| Throws the given exception, which can | : be any copyable value. Available since :: v1.1.0. :
Using a Function, Functor, Lambda, or Callback as an Action
In the following, by "callable" we mean a free function, std::function,
functor, lambda, or google3-style permanent callback.
| Matcher | Description |
|---|---|
Invoke(f) |
Invoke f with the arguments passed |
- : : to the mock function, where
fcan be : : a global/static function or a functor. :- | `Invoke(object_pointer, | Invoke the {method on the object with |
- &class::method)` : the arguments passed to the mock :
: function. :- |
InvokeWithoutArgs(f)| Invokef, which can be a | : global/static function or a functor. :: `f` must take no arguments. :- | `InvokeWithoutArgs(object_pointer, | Invoke the method on the object, which |
- &class::method)
: takes no arguments. : |InvokeArgument(arg1, arg2, ..., | Invoke the mock function'sN-th | - argk)` : (0-based) argument, which must be a :
: function or a functor, with the `k` :: arguments. :
The return value of the invoked function is used as the return value of the action.
When defining a callable to be used with Invoke*(), you can declare any unused
parameters as Unused:
using ::testing::Invoke;
double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); }
...
EXPECT_CALL(mock, Foo("Hi", _, _)).WillOnce(Invoke(Distance));
Invoke(callback) and InvokeWithoutArgs(callback) take ownership of
callback, which must be permanent. The type of callback must be a base
callback type instead of a derived one, e.g.
BlockingClosure* done = new BlockingClosure;
... Invoke(done) ...; // This won't compile!
Closure* done2 = new BlockingClosure;
... Invoke(done2) ...; // This works.
In InvokeArgument<N>(...), if an argument needs to be passed by reference,
wrap it inside ByRef(). For example,
using ::testing::ByRef;
using ::testing::InvokeArgument;
...
InvokeArgument<2>(5, string("Hi"), ByRef(foo))
calls the mock function's #2 argument, passing to it 5 and string("Hi") by
value, and foo by reference.
Default Action
| Matcher | Description |
|---|---|
DoDefault() |
Do the default action (specified by ON_CALL() or the |
: : built-in one). :
Note: due to technical reasons, DoDefault() cannot be used inside a
composite action - trying to do so will result in a run-time error.
Composite Actions
| Matcher | Description |
|---|---|
DoAll(a1, a2, ..., an) |
Do all actions a1 to an and return the |
- : : result of
anin each invocation. The : : first `n - 1` sub-actions must return void. :- |
IgnoreResult(a)| Perform actionaand ignore its result. | : `a` must not return void. :- |
WithArg<N>(a)| Pass theN-th (0-based) argument of the | : mock function to action `a` and perform it. :- |
WithArgs<N1, N2, ..., Nk>(a)| Pass the selected (0-based) arguments of | : the mock function to action `a` and perform :: it. :
| WithoutArgs(a) | Perform action a without any arguments. |
Defining Actions
| Matcher | Description |
|---|---|
| `ACTION(Sum) { return arg0 + arg1; | Defines an action Sum() to return the |
- : }` : sum of the mock function's argument #0 :
: and #1. :- |
ACTION_P(Plus, n) { return arg0 + | Defines an actionPlus(n)` to return | - n; }` : the sum of the mock function's :
: argument #0 and `n`. :- |
ACTION_Pk(Foo, p1, ..., pk) { | Defines a parameterized actionFoo(p1, | - statements; }
: ..., pk)to execute the given : : `statements`. :
The ACTION* macros cannot be used inside a function or class.
Cardinalities
These are used in Times() to specify how many times a mock function will be
called:
| Matcher | Description |
|---|---|
AnyNumber() |
The function can be called any number of times. |
AtLeast(n) |
The call is expected at least n times. |
AtMost(n) |
The call is expected at most n times. |
Between(m, n) |
The call is expected between m and n (inclusive) |
- : : times. :
- |
Exactly(n) or n| The call is expected exactlyntimes. In particular, | : the call should never happen when `n` is 0. :
Expectation Order
By default, the expectations can be matched in any order. If some or all expectations must be matched in a given order, there are two ways to specify it. They can be used either independently or together.
The After Clause
using ::testing::Expectation;
...
Expectation init_x = EXPECT_CALL(foo, InitX());
Expectation init_y = EXPECT_CALL(foo, InitY());
EXPECT_CALL(foo, Bar())
.After(init_x, init_y);
says that Bar() can be called only after both InitX() and InitY() have
been called.
If you don't know how many pre-requisites an expectation has when you write it,
you can use an ExpectationSet to collect them:
using ::testing::ExpectationSet;
...
ExpectationSet all_inits;
for (int i = 0; i < element_count; i++) {
all_inits += EXPECT_CALL(foo, InitElement(i));
}
EXPECT_CALL(foo, Bar())
.After(all_inits);
says that Bar() can be called only after all elements have been initialized
(but we don't care about which elements get initialized before the others).
Modifying an ExpectationSet after using it in an .After() doesn't affect the
meaning of the .After().
Sequences
When you have a long chain of sequential expectations, it's easier to specify the order using sequences, which don't require you to given each expectation in the chain a different name. All expected calls in the same sequence must occur in the order they are specified.
using ::testing::Return;
using ::testing::Sequence;
Sequence s1, s2;
...
EXPECT_CALL(foo, Reset())
.InSequence(s1, s2)
.WillOnce(Return(true));
EXPECT_CALL(foo, GetSize())
.InSequence(s1)
.WillOnce(Return(1));
EXPECT_CALL(foo, Describe(A<const char*>()))
.InSequence(s2)
.WillOnce(Return("dummy"));
says that Reset() must be called before both GetSize() and Describe(),
and the latter two can occur in any order.
To put many expectations in a sequence conveniently:
using ::testing::InSequence;
{
InSequence seq;
EXPECT_CALL(...)...;
EXPECT_CALL(...)...;
...
EXPECT_CALL(...)...;
}
says that all expected calls in the scope of seq must occur in strict order.
The name seq is irrelevant.
Verifying and Resetting a Mock
gMock will verify the expectations on a mock object when it is destructed, or you can do it earlier:
using ::testing::Mock;
...
// Verifies and removes the expectations on mock_obj;
// returns true if successful.
Mock::VerifyAndClearExpectations(&mock_obj);
...
// Verifies and removes the expectations on mock_obj;
// also removes the default actions set by ON_CALL();
// returns true if successful.
Mock::VerifyAndClear(&mock_obj);
You can also tell gMock that a mock object can be leaked and doesn't need to be verified:
Mock::AllowLeak(&mock_obj);
Mock Classes
gMock defines a convenient mock class template
class MockFunction<R(A1, ..., An)> {
public:
MOCK_METHOD(R, Call, (A1, ..., An));
};
See this recipe for one application of it.
Flags
| Flag | Description |
|---|---|
--gmock_catch_leaked_mocks=0 |
Don't report leaked mock objects as |
- : : failures. :
- |
--gmock_verbose=LEVEL| Sets the default verbosity level (info, | : `warning`, or `error`) of Google Mock :: messages. :