743 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			743 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
$$ -*- mode: c++; -*-
 | 
						|
$$ This is a Pump source file.  Please use Pump to convert it to
 | 
						|
$$ gmock-generated-variadic-actions.h.
 | 
						|
$$
 | 
						|
$var n = 10  $$ The maximum arity we support.
 | 
						|
$$ }} This line fixes auto-indentation of the following code in Emacs.
 | 
						|
// Copyright 2008, Google Inc.
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//     * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//     * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//     * Neither the name of Google Inc. nor the names of its
 | 
						|
// contributors may be used to endorse or promote products derived from
 | 
						|
// this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
// Google Mock - a framework for writing C++ mock classes.
 | 
						|
//
 | 
						|
// This file implements some commonly used variadic matchers.
 | 
						|
 | 
						|
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
 | 
						|
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
 | 
						|
 | 
						|
#include <sstream>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
#include <gmock/gmock-matchers.h>
 | 
						|
#include <gmock/gmock-printers.h>
 | 
						|
 | 
						|
namespace testing {
 | 
						|
namespace internal {
 | 
						|
 | 
						|
$range i 0..n-1
 | 
						|
 | 
						|
// The type of the i-th (0-based) field of Tuple.
 | 
						|
#define GMOCK_FIELD_TYPE_(Tuple, i) \
 | 
						|
    typename ::std::tr1::tuple_element<i, Tuple>::type
 | 
						|
 | 
						|
// TupleFields<Tuple, k0, ..., kn> is for selecting fields from a
 | 
						|
// tuple of type Tuple.  It has two members:
 | 
						|
//
 | 
						|
//   type: a tuple type whose i-th field is the ki-th field of Tuple.
 | 
						|
//   GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple.
 | 
						|
//
 | 
						|
// For example, in class TupleFields<tuple<bool, char, int>, 2, 0>, we have:
 | 
						|
//
 | 
						|
//   type is tuple<int, bool>, and
 | 
						|
//   GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true).
 | 
						|
 | 
						|
template <class Tuple$for i [[, int k$i = -1]]>
 | 
						|
class TupleFields;
 | 
						|
 | 
						|
// This generic version is used when there are $n selectors.
 | 
						|
template <class Tuple$for i [[, int k$i]]>
 | 
						|
class TupleFields {
 | 
						|
 public:
 | 
						|
  typedef ::std::tr1::tuple<$for i, [[GMOCK_FIELD_TYPE_(Tuple, k$i)]]> type;
 | 
						|
  static type GetSelectedFields(const Tuple& t) {
 | 
						|
    using ::std::tr1::get;
 | 
						|
    return type($for i, [[get<k$i>(t)]]);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// The following specialization is used for 0 ~ $(n-1) selectors.
 | 
						|
 | 
						|
$for i [[
 | 
						|
$$ }}}
 | 
						|
$range j 0..i-1
 | 
						|
$range k 0..n-1
 | 
						|
 | 
						|
template <class Tuple$for j [[, int k$j]]>
 | 
						|
class TupleFields<Tuple, $for k, [[$if k < i [[k$k]] $else [[-1]]]]> {
 | 
						|
 public:
 | 
						|
  typedef ::std::tr1::tuple<$for j, [[GMOCK_FIELD_TYPE_(Tuple, k$j)]]> type;
 | 
						|
  static type GetSelectedFields(const Tuple& t) {
 | 
						|
    using ::std::tr1::get;
 | 
						|
    return type($for j, [[get<k$j>(t)]]);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
]]
 | 
						|
 | 
						|
#undef GMOCK_FIELD_TYPE_
 | 
						|
 | 
						|
// Implements the Args() matcher.
 | 
						|
 | 
						|
$var ks = [[$for i, [[k$i]]]]
 | 
						|
template <class ArgsTuple$for i [[, int k$i = -1]]>
 | 
						|
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
 | 
						|
 public:
 | 
						|
  // ArgsTuple may have top-level const or reference modifiers.
 | 
						|
  typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(ArgsTuple)) RawArgsTuple;
 | 
						|
  typedef typename internal::TupleFields<RawArgsTuple, $ks>::type SelectedArgs;
 | 
						|
  typedef Matcher<const SelectedArgs&> MonomorphicInnerMatcher;
 | 
						|
 | 
						|
  template <typename InnerMatcher>
 | 
						|
  explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
 | 
						|
      : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
 | 
						|
 | 
						|
  virtual bool Matches(ArgsTuple args) const {
 | 
						|
    return inner_matcher_.Matches(GetSelectedArgs(args));
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void DescribeTo(::std::ostream* os) const {
 | 
						|
    PrintIndices(os);
 | 
						|
    inner_matcher_.DescribeTo(os);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void DescribeNegationTo(::std::ostream* os) const {
 | 
						|
    PrintIndices(os);
 | 
						|
    inner_matcher_.DescribeNegationTo(os);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void ExplainMatchResultTo(ArgsTuple args,
 | 
						|
                                    ::std::ostream* os) const {
 | 
						|
    inner_matcher_.ExplainMatchResultTo(GetSelectedArgs(args), os);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  static SelectedArgs GetSelectedArgs(ArgsTuple args) {
 | 
						|
    return TupleFields<RawArgsTuple, $ks>::GetSelectedFields(args);
 | 
						|
  }
 | 
						|
 | 
						|
  // Prints the indices of the selected fields.
 | 
						|
  static void PrintIndices(::std::ostream* os) {
 | 
						|
    *os << "are a tuple whose fields (";
 | 
						|
    const int indices[$n] = { $ks };
 | 
						|
    for (int i = 0; i < $n; i++) {
 | 
						|
      if (indices[i] < 0)
 | 
						|
        break;
 | 
						|
 | 
						|
      if (i >= 1)
 | 
						|
        *os << ", ";
 | 
						|
 | 
						|
      *os << "#" << indices[i];
 | 
						|
    }
 | 
						|
    *os << ") ";
 | 
						|
  }
 | 
						|
 | 
						|
  const MonomorphicInnerMatcher inner_matcher_;
 | 
						|
};
 | 
						|
 | 
						|
template <class InnerMatcher$for i [[, int k$i = -1]]>
 | 
						|
class ArgsMatcher {
 | 
						|
 public:
 | 
						|
  explicit ArgsMatcher(const InnerMatcher& inner_matcher)
 | 
						|
      : inner_matcher_(inner_matcher) {}
 | 
						|
 | 
						|
  template <typename ArgsTuple>
 | 
						|
  operator Matcher<ArgsTuple>() const {
 | 
						|
    return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, $ks>(inner_matcher_));
 | 
						|
  }
 | 
						|
 | 
						|
  const InnerMatcher inner_matcher_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements ElementsAre() and ElementsAreArray().
 | 
						|
template <typename Container>
 | 
						|
class ElementsAreMatcherImpl : public MatcherInterface<Container> {
 | 
						|
 public:
 | 
						|
  typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
 | 
						|
  typedef internal::StlContainerView<RawContainer> View;
 | 
						|
  typedef typename View::type StlContainer;
 | 
						|
  typedef typename View::const_reference StlContainerReference;
 | 
						|
  typedef typename StlContainer::value_type Element;
 | 
						|
 | 
						|
  // Constructs the matcher from a sequence of element values or
 | 
						|
  // element matchers.
 | 
						|
  template <typename InputIter>
 | 
						|
  ElementsAreMatcherImpl(InputIter first, size_t count) {
 | 
						|
    matchers_.reserve(count);
 | 
						|
    InputIter it = first;
 | 
						|
    for (size_t i = 0; i != count; ++i, ++it) {
 | 
						|
      matchers_.push_back(MatcherCast<const Element&>(*it));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns true iff 'container' matches.
 | 
						|
  virtual bool Matches(Container container) const {
 | 
						|
    StlContainerReference stl_container = View::ConstReference(container);
 | 
						|
    if (stl_container.size() != count())
 | 
						|
      return false;
 | 
						|
 | 
						|
    typename StlContainer::const_iterator it = stl_container.begin();
 | 
						|
    for (size_t i = 0; i != count();  ++it, ++i) {
 | 
						|
      if (!matchers_[i].Matches(*it))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Describes what this matcher does.
 | 
						|
  virtual void DescribeTo(::std::ostream* os) const {
 | 
						|
    if (count() == 0) {
 | 
						|
      *os << "is empty";
 | 
						|
    } else if (count() == 1) {
 | 
						|
      *os << "has 1 element that ";
 | 
						|
      matchers_[0].DescribeTo(os);
 | 
						|
    } else {
 | 
						|
      *os << "has " << Elements(count()) << " where\n";
 | 
						|
      for (size_t i = 0; i != count(); ++i) {
 | 
						|
        *os << "element " << i << " ";
 | 
						|
        matchers_[i].DescribeTo(os);
 | 
						|
        if (i + 1 < count()) {
 | 
						|
          *os << ",\n";
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Describes what the negation of this matcher does.
 | 
						|
  virtual void DescribeNegationTo(::std::ostream* os) const {
 | 
						|
    if (count() == 0) {
 | 
						|
      *os << "is not empty";
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    *os << "does not have " << Elements(count()) << ", or\n";
 | 
						|
    for (size_t i = 0; i != count(); ++i) {
 | 
						|
      *os << "element " << i << " ";
 | 
						|
      matchers_[i].DescribeNegationTo(os);
 | 
						|
      if (i + 1 < count()) {
 | 
						|
        *os << ", or\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Explains why 'container' matches, or doesn't match, this matcher.
 | 
						|
  virtual void ExplainMatchResultTo(Container container,
 | 
						|
                                    ::std::ostream* os) const {
 | 
						|
    StlContainerReference stl_container = View::ConstReference(container);
 | 
						|
    if (Matches(container)) {
 | 
						|
      // We need to explain why *each* element matches (the obvious
 | 
						|
      // ones can be skipped).
 | 
						|
 | 
						|
      bool reason_printed = false;
 | 
						|
      typename StlContainer::const_iterator it = stl_container.begin();
 | 
						|
      for (size_t i = 0; i != count(); ++it, ++i) {
 | 
						|
        ::std::stringstream ss;
 | 
						|
        matchers_[i].ExplainMatchResultTo(*it, &ss);
 | 
						|
 | 
						|
        const string s = ss.str();
 | 
						|
        if (!s.empty()) {
 | 
						|
          if (reason_printed) {
 | 
						|
            *os << ",\n";
 | 
						|
          }
 | 
						|
          *os << "element " << i << " " << s;
 | 
						|
          reason_printed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // We need to explain why the container doesn't match.
 | 
						|
      const size_t actual_count = stl_container.size();
 | 
						|
      if (actual_count != count()) {
 | 
						|
        // The element count doesn't match.  If the container is
 | 
						|
        // empty, there's no need to explain anything as Google Mock
 | 
						|
        // already prints the empty container.  Otherwise we just need
 | 
						|
        // to show how many elements there actually are.
 | 
						|
        if (actual_count != 0) {
 | 
						|
          *os << "has " << Elements(actual_count);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // The container has the right size but at least one element
 | 
						|
      // doesn't match expectation.  We need to find this element and
 | 
						|
      // explain why it doesn't match.
 | 
						|
      typename StlContainer::const_iterator it = stl_container.begin();
 | 
						|
      for (size_t i = 0; i != count(); ++it, ++i) {
 | 
						|
        if (matchers_[i].Matches(*it)) {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        *os << "element " << i << " doesn't match";
 | 
						|
 | 
						|
        ::std::stringstream ss;
 | 
						|
        matchers_[i].ExplainMatchResultTo(*it, &ss);
 | 
						|
        const string s = ss.str();
 | 
						|
        if (!s.empty()) {
 | 
						|
          *os << " (" << s << ")";
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  static Message Elements(size_t count) {
 | 
						|
    return Message() << count << (count == 1 ? " element" : " elements");
 | 
						|
  }
 | 
						|
 | 
						|
  size_t count() const { return matchers_.size(); }
 | 
						|
  std::vector<Matcher<const Element&> > matchers_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements ElementsAre() of 0-10 arguments.
 | 
						|
 | 
						|
class ElementsAreMatcher0 {
 | 
						|
 public:
 | 
						|
  ElementsAreMatcher0() {}
 | 
						|
 | 
						|
  template <typename Container>
 | 
						|
  operator Matcher<Container>() const {
 | 
						|
    typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
 | 
						|
        RawContainer;
 | 
						|
    typedef typename internal::StlContainerView<RawContainer>::type::value_type
 | 
						|
        Element;
 | 
						|
 | 
						|
    const Matcher<const Element&>* const matchers = NULL;
 | 
						|
    return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
$range i 1..n
 | 
						|
$for i [[
 | 
						|
$range j 1..i
 | 
						|
template <$for j, [[typename T$j]]>
 | 
						|
class ElementsAreMatcher$i {
 | 
						|
 public:
 | 
						|
  $if i==1 [[explicit ]]ElementsAreMatcher$i($for j, [[const T$j& e$j]])$if i > 0 [[ : ]]
 | 
						|
      $for j, [[e$j[[]]_(e$j)]] {}
 | 
						|
 | 
						|
  template <typename Container>
 | 
						|
  operator Matcher<Container>() const {
 | 
						|
    typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
 | 
						|
        RawContainer;
 | 
						|
    typedef typename internal::StlContainerView<RawContainer>::type::value_type
 | 
						|
        Element;
 | 
						|
 | 
						|
    const Matcher<const Element&> matchers[] = {
 | 
						|
 | 
						|
$for j [[
 | 
						|
      MatcherCast<const Element&>(e$j[[]]_),
 | 
						|
 | 
						|
]]
 | 
						|
    };
 | 
						|
 | 
						|
    return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, $i));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
 | 
						|
$for j [[
 | 
						|
  const T$j& e$j[[]]_;
 | 
						|
 | 
						|
]]
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
]]
 | 
						|
// Implements ElementsAreArray().
 | 
						|
template <typename T>
 | 
						|
class ElementsAreArrayMatcher {
 | 
						|
 public:
 | 
						|
  ElementsAreArrayMatcher(const T* first, size_t count) :
 | 
						|
      first_(first), count_(count) {}
 | 
						|
 | 
						|
  template <typename Container>
 | 
						|
  operator Matcher<Container>() const {
 | 
						|
    typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
 | 
						|
        RawContainer;
 | 
						|
    typedef typename internal::StlContainerView<RawContainer>::type::value_type
 | 
						|
        Element;
 | 
						|
 | 
						|
    return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  const T* const first_;
 | 
						|
  const size_t count_;
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
 | 
						|
// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
 | 
						|
// fields of it matches a_matcher.  C++ doesn't support default
 | 
						|
// arguments for function templates, so we have to overload it.
 | 
						|
 | 
						|
$range i 0..n
 | 
						|
$for i [[
 | 
						|
$range j 1..i
 | 
						|
template <$for j [[int k$j, ]]typename InnerMatcher>
 | 
						|
inline internal::ArgsMatcher<InnerMatcher$for j [[, k$j]]>
 | 
						|
Args(const InnerMatcher& matcher) {
 | 
						|
  return internal::ArgsMatcher<InnerMatcher$for j [[, k$j]]>(matcher);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
]]
 | 
						|
// ElementsAre(e0, e1, ..., e_n) matches an STL-style container with
 | 
						|
// (n + 1) elements, where the i-th element in the container must
 | 
						|
// match the i-th argument in the list.  Each argument of
 | 
						|
// ElementsAre() can be either a value or a matcher.  We support up to
 | 
						|
// $n arguments.
 | 
						|
//
 | 
						|
// NOTE: Since ElementsAre() cares about the order of the elements, it
 | 
						|
// must not be used with containers whose elements's order is
 | 
						|
// undefined (e.g. hash_map).
 | 
						|
 | 
						|
inline internal::ElementsAreMatcher0 ElementsAre() {
 | 
						|
  return internal::ElementsAreMatcher0();
 | 
						|
}
 | 
						|
 | 
						|
$range i 1..n
 | 
						|
$for i [[
 | 
						|
$range j 1..i
 | 
						|
 | 
						|
template <$for j, [[typename T$j]]>
 | 
						|
inline internal::ElementsAreMatcher$i<$for j, [[T$j]]> ElementsAre($for j, [[const T$j& e$j]]) {
 | 
						|
  return internal::ElementsAreMatcher$i<$for j, [[T$j]]>($for j, [[e$j]]);
 | 
						|
}
 | 
						|
 | 
						|
]]
 | 
						|
 | 
						|
// ElementsAreArray(array) and ElementAreArray(array, count) are like
 | 
						|
// ElementsAre(), except that they take an array of values or
 | 
						|
// matchers.  The former form infers the size of 'array', which must
 | 
						|
// be a static C-style array.  In the latter form, 'array' can either
 | 
						|
// be a static array or a pointer to a dynamically created array.
 | 
						|
 | 
						|
template <typename T>
 | 
						|
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
 | 
						|
    const T* first, size_t count) {
 | 
						|
  return internal::ElementsAreArrayMatcher<T>(first, count);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, size_t N>
 | 
						|
inline internal::ElementsAreArrayMatcher<T>
 | 
						|
ElementsAreArray(const T (&array)[N]) {
 | 
						|
  return internal::ElementsAreArrayMatcher<T>(array, N);
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace testing
 | 
						|
$$ } // This Pump meta comment fixes auto-indentation in Emacs. It will not
 | 
						|
$$   // show up in the generated code.
 | 
						|
 | 
						|
 | 
						|
// The MATCHER* family of macros can be used in a namespace scope to
 | 
						|
// define custom matchers easily.  The syntax:
 | 
						|
//
 | 
						|
//   MATCHER(name, description_string) { statements; }
 | 
						|
//
 | 
						|
// will define a matcher with the given name that executes the
 | 
						|
// statements, which must return a bool to indicate if the match
 | 
						|
// succeeds.  Inside the statements, you can refer to the value being
 | 
						|
// matched by 'arg', and refer to its type by 'arg_type'.
 | 
						|
//
 | 
						|
// The description string documents what the matcher does, and is used
 | 
						|
// to generate the failure message when the match fails.  Since a
 | 
						|
// MATCHER() is usually defined in a header file shared by multiple
 | 
						|
// C++ source files, we require the description to be a C-string
 | 
						|
// literal to avoid possible side effects.  It can be empty, in which
 | 
						|
// case we'll use the sequence of words in the matcher name as the
 | 
						|
// description.
 | 
						|
//
 | 
						|
// For example:
 | 
						|
//
 | 
						|
//   MATCHER(IsEven, "") { return (arg % 2) == 0; }
 | 
						|
//
 | 
						|
// allows you to write
 | 
						|
//
 | 
						|
//   // Expects mock_foo.Bar(n) to be called where n is even.
 | 
						|
//   EXPECT_CALL(mock_foo, Bar(IsEven()));
 | 
						|
//
 | 
						|
// or,
 | 
						|
//
 | 
						|
//   // Verifies that the value of some_expression is even.
 | 
						|
//   EXPECT_THAT(some_expression, IsEven());
 | 
						|
//
 | 
						|
// If the above assertion fails, it will print something like:
 | 
						|
//
 | 
						|
//   Value of: some_expression
 | 
						|
//   Expected: is even
 | 
						|
//     Actual: 7
 | 
						|
//
 | 
						|
// where the description "is even" is automatically calculated from the
 | 
						|
// matcher name IsEven.
 | 
						|
//
 | 
						|
// Note that the type of the value being matched (arg_type) is
 | 
						|
// determined by the context in which you use the matcher and is
 | 
						|
// supplied to you by the compiler, so you don't need to worry about
 | 
						|
// declaring it (nor can you).  This allows the matcher to be
 | 
						|
// polymorphic.  For example, IsEven() can be used to match any type
 | 
						|
// where the value of "(arg % 2) == 0" can be implicitly converted to
 | 
						|
// a bool.  In the "Bar(IsEven())" example above, if method Bar()
 | 
						|
// takes an int, 'arg_type' will be int; if it takes an unsigned long,
 | 
						|
// 'arg_type' will be unsigned long; and so on.
 | 
						|
//
 | 
						|
// Sometimes you'll want to parameterize the matcher.  For that you
 | 
						|
// can use another macro:
 | 
						|
//
 | 
						|
//   MATCHER_P(name, param_name, description_string) { statements; }
 | 
						|
//
 | 
						|
// For example:
 | 
						|
//
 | 
						|
//   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
 | 
						|
//
 | 
						|
// will allow you to write:
 | 
						|
//
 | 
						|
//   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
 | 
						|
//
 | 
						|
// which may lead to this message (assuming n is 10):
 | 
						|
//
 | 
						|
//   Value of: Blah("a")
 | 
						|
//   Expected: has absolute value 10
 | 
						|
//     Actual: -9
 | 
						|
//
 | 
						|
// Note that both the matcher description and its parameter are
 | 
						|
// printed, making the message human-friendly.
 | 
						|
//
 | 
						|
// In the matcher definition body, you can write 'foo_type' to
 | 
						|
// reference the type of a parameter named 'foo'.  For example, in the
 | 
						|
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
 | 
						|
// 'value_type' to refer to the type of 'value'.
 | 
						|
//
 | 
						|
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
 | 
						|
// support multi-parameter matchers.
 | 
						|
//
 | 
						|
// When defining a parameterized matcher, you can use Python-style
 | 
						|
// interpolations in the description string to refer to the parameter
 | 
						|
// values.  We support the following syntax currently:
 | 
						|
//
 | 
						|
//   %%       a single '%' character
 | 
						|
//   %(*)s    all parameters of the matcher printed as a tuple
 | 
						|
//   %(foo)s  value of the matcher parameter named 'foo'
 | 
						|
//
 | 
						|
// For example,
 | 
						|
//
 | 
						|
//   MATCHER_P2(InClosedRange, low, hi, "is in range [%(low)s, %(hi)s]") {
 | 
						|
//     return low <= arg && arg <= hi;
 | 
						|
//   }
 | 
						|
//   ...
 | 
						|
//   EXPECT_THAT(3, InClosedRange(4, 6));
 | 
						|
//
 | 
						|
// would generate a failure that contains the message:
 | 
						|
//
 | 
						|
//   Expected: is in range [4, 6]
 | 
						|
//
 | 
						|
// If you specify "" as the description, the failure message will
 | 
						|
// contain the sequence of words in the matcher name followed by the
 | 
						|
// parameter values printed as a tuple.  For example,
 | 
						|
//
 | 
						|
//   MATCHER_P2(InClosedRange, low, hi, "") { ... }
 | 
						|
//   ...
 | 
						|
//   EXPECT_THAT(3, InClosedRange(4, 6));
 | 
						|
//
 | 
						|
// would generate a failure that contains the text:
 | 
						|
//
 | 
						|
//   Expected: in closed range (4, 6)
 | 
						|
//
 | 
						|
// For the purpose of typing, you can view
 | 
						|
//
 | 
						|
//   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
 | 
						|
//
 | 
						|
// as shorthand for
 | 
						|
//
 | 
						|
//   template <typename p1_type, ..., typename pk_type>
 | 
						|
//   FooMatcherPk<p1_type, ..., pk_type>
 | 
						|
//   Foo(p1_type p1, ..., pk_type pk) { ... }
 | 
						|
//
 | 
						|
// When you write Foo(v1, ..., vk), the compiler infers the types of
 | 
						|
// the parameters v1, ..., and vk for you.  If you are not happy with
 | 
						|
// the result of the type inference, you can specify the types by
 | 
						|
// explicitly instantiating the template, as in Foo<long, bool>(5,
 | 
						|
// false).  As said earlier, you don't get to (or need to) specify
 | 
						|
// 'arg_type' as that's determined by the context in which the matcher
 | 
						|
// is used.  You can assign the result of expression Foo(p1, ..., pk)
 | 
						|
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
 | 
						|
// can be useful when composing matchers.
 | 
						|
//
 | 
						|
// While you can instantiate a matcher template with reference types,
 | 
						|
// passing the parameters by pointer usually makes your code more
 | 
						|
// readable.  If, however, you still want to pass a parameter by
 | 
						|
// reference, be aware that in the failure message generated by the
 | 
						|
// matcher you will see the value of the referenced object but not its
 | 
						|
// address.
 | 
						|
//
 | 
						|
// You can overload matchers with different numbers of parameters:
 | 
						|
//
 | 
						|
//   MATCHER_P(Blah, a, description_string1) { ... }
 | 
						|
//   MATCHER_P2(Blah, a, b, description_string2) { ... }
 | 
						|
//
 | 
						|
// While it's tempting to always use the MATCHER* macros when defining
 | 
						|
// a new matcher, you should also consider implementing
 | 
						|
// MatcherInterface or using MakePolymorphicMatcher() instead,
 | 
						|
// especially if you need to use the matcher a lot.  While these
 | 
						|
// approaches require more work, they give you more control on the
 | 
						|
// types of the value being matched and the matcher parameters, which
 | 
						|
// in general leads to better compiler error messages that pay off in
 | 
						|
// the long run.  They also allow overloading matchers based on
 | 
						|
// parameter types (as opposed to just based on the number of
 | 
						|
// parameters).
 | 
						|
//
 | 
						|
// CAVEAT:
 | 
						|
//
 | 
						|
// MATCHER*() can only be used in a namespace scope.  The reason is
 | 
						|
// that C++ doesn't yet allow function-local types to be used to
 | 
						|
// instantiate templates.  The up-coming C++0x standard will fix this.
 | 
						|
// Once that's done, we'll consider supporting using MATCHER*() inside
 | 
						|
// a function.
 | 
						|
//
 | 
						|
// MORE INFORMATION:
 | 
						|
//
 | 
						|
// To learn more about using these macros, please search for 'MATCHER'
 | 
						|
// on http://code.google.com/p/googlemock/wiki/CookBook.
 | 
						|
 | 
						|
namespace testing {
 | 
						|
namespace internal {
 | 
						|
 | 
						|
// Constants denoting interpolations in a matcher description string.
 | 
						|
const int kTupleInterpolation = -1;    // "%(*)s"
 | 
						|
const int kPercentInterpolation = -2;  // "%%"
 | 
						|
const int kInvalidInterpolation = -3;  // "%" followed by invalid text
 | 
						|
 | 
						|
// Records the location and content of an interpolation.
 | 
						|
struct Interpolation {
 | 
						|
  Interpolation(const char* start, const char* end, int param)
 | 
						|
      : start_pos(start), end_pos(end), param_index(param) {}
 | 
						|
 | 
						|
  // Points to the start of the interpolation (the '%' character).
 | 
						|
  const char* start_pos;
 | 
						|
  // Points to the first character after the interpolation.
 | 
						|
  const char* end_pos;
 | 
						|
  // 0-based index of the interpolated matcher parameter;
 | 
						|
  // kTupleInterpolation for "%(*)s"; kPercentInterpolation for "%%".
 | 
						|
  int param_index;
 | 
						|
};
 | 
						|
 | 
						|
typedef ::std::vector<Interpolation> Interpolations;
 | 
						|
 | 
						|
// Parses a matcher description string and returns a vector of
 | 
						|
// interpolations that appear in the string; generates non-fatal
 | 
						|
// failures iff 'description' is an invalid matcher description.
 | 
						|
// 'param_names' is a NULL-terminated array of parameter names in the
 | 
						|
// order they appear in the MATCHER_P*() parameter list.
 | 
						|
Interpolations ValidateMatcherDescription(
 | 
						|
    const char* param_names[], const char* description);
 | 
						|
 | 
						|
// Returns the actual matcher description, given the matcher name,
 | 
						|
// user-supplied description template string, interpolations in the
 | 
						|
// string, and the printed values of the matcher parameters.
 | 
						|
string FormatMatcherDescription(
 | 
						|
    const char* matcher_name, const char* description,
 | 
						|
    const Interpolations& interp, const Strings& param_values);
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
}  // namespace testing
 | 
						|
 | 
						|
$range i 0..n
 | 
						|
$for i
 | 
						|
 | 
						|
[[
 | 
						|
$var macro_name = [[$if i==0 [[MATCHER]] $elif i==1 [[MATCHER_P]]
 | 
						|
                                         $else [[MATCHER_P$i]]]]
 | 
						|
$var class_name = [[name##Matcher[[$if i==0 [[]] $elif i==1 [[P]]
 | 
						|
                                                 $else [[P$i]]]]]]
 | 
						|
$range j 0..i-1
 | 
						|
$var template = [[$if i==0 [[]] $else [[
 | 
						|
 | 
						|
  template <$for j, [[typename p$j##_type]]>\
 | 
						|
]]]]
 | 
						|
$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
 | 
						|
$var impl_ctor_param_list = [[$for j [[p$j##_type gmock_p$j, ]]
 | 
						|
const ::testing::internal::Interpolations& gmock_interp]]
 | 
						|
$var impl_inits = [[ : $for j [[p$j(gmock_p$j), ]]gmock_interp_(gmock_interp)]]
 | 
						|
$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
 | 
						|
$var params_and_interp = [[$for j [[p$j, ]]gmock_interp_]]
 | 
						|
$var params = [[$for j, [[p$j]]]]
 | 
						|
$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]]
 | 
						|
$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]]
 | 
						|
$var param_field_decls = [[$for j
 | 
						|
[[
 | 
						|
 | 
						|
      p$j##_type p$j;\
 | 
						|
]]]]
 | 
						|
$var param_field_decls2 = [[$for j
 | 
						|
[[
 | 
						|
 | 
						|
    p$j##_type p$j;\
 | 
						|
]]]]
 | 
						|
 | 
						|
#define $macro_name(name$for j [[, p$j]], description)\$template
 | 
						|
  class $class_name {\
 | 
						|
   public:\
 | 
						|
    template <typename arg_type>\
 | 
						|
    class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
 | 
						|
     public:\
 | 
						|
      [[$if i==1 [[explicit ]]]]gmock_Impl($impl_ctor_param_list)\
 | 
						|
          $impl_inits {}\
 | 
						|
      virtual bool Matches(arg_type arg) const;\
 | 
						|
      virtual void DescribeTo(::std::ostream* gmock_os) const {\
 | 
						|
        const ::testing::internal::Strings& gmock_printed_params = \
 | 
						|
            ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
 | 
						|
                ::std::tr1::tuple<$for j, [[p$j##_type]]>($for j, [[p$j]]));\
 | 
						|
        *gmock_os << ::testing::internal::FormatMatcherDescription(\
 | 
						|
                     #name, description, gmock_interp_, gmock_printed_params);\
 | 
						|
      }\$param_field_decls
 | 
						|
      const ::testing::internal::Interpolations gmock_interp_;\
 | 
						|
    };\
 | 
						|
    template <typename arg_type>\
 | 
						|
    operator ::testing::Matcher<arg_type>() const {\
 | 
						|
      return ::testing::Matcher<arg_type>(\
 | 
						|
          new gmock_Impl<arg_type>($params_and_interp));\
 | 
						|
    }\
 | 
						|
    $class_name($ctor_param_list)$inits {\
 | 
						|
      const char* gmock_param_names[] = { $for j [[#p$j, ]]NULL };\
 | 
						|
      gmock_interp_ = ::testing::internal::ValidateMatcherDescription(\
 | 
						|
          gmock_param_names, ("" description ""));\
 | 
						|
    }\$param_field_decls2
 | 
						|
    ::testing::internal::Interpolations gmock_interp_;\
 | 
						|
  };\$template
 | 
						|
  inline $class_name$param_types name($param_types_and_names) {\
 | 
						|
    return $class_name$param_types($params);\
 | 
						|
  }\$template
 | 
						|
  template <typename arg_type>\
 | 
						|
  bool $class_name$param_types::\
 | 
						|
      gmock_Impl<arg_type>::Matches(arg_type arg) const
 | 
						|
]]
 | 
						|
 | 
						|
 | 
						|
#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
 |