This is compatible with compiling with "-Wundef" (#3267). PiperOrigin-RevId: 513943378 Change-Id: I47cf5fabbb77be061c4483a0adc54511af6b191c
		
			
				
	
	
		
			2298 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2298 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2007, Google Inc.
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//     * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//     * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//     * Neither the name of Google Inc. nor the names of its
 | 
						|
// contributors may be used to endorse or promote products derived from
 | 
						|
// this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
// Google Mock - a framework for writing C++ mock classes.
 | 
						|
//
 | 
						|
// The ACTION* family of macros can be used in a namespace scope to
 | 
						|
// define custom actions easily.  The syntax:
 | 
						|
//
 | 
						|
//   ACTION(name) { statements; }
 | 
						|
//
 | 
						|
// will define an action with the given name that executes the
 | 
						|
// statements.  The value returned by the statements will be used as
 | 
						|
// the return value of the action.  Inside the statements, you can
 | 
						|
// refer to the K-th (0-based) argument of the mock function by
 | 
						|
// 'argK', and refer to its type by 'argK_type'.  For example:
 | 
						|
//
 | 
						|
//   ACTION(IncrementArg1) {
 | 
						|
//     arg1_type temp = arg1;
 | 
						|
//     return ++(*temp);
 | 
						|
//   }
 | 
						|
//
 | 
						|
// allows you to write
 | 
						|
//
 | 
						|
//   ...WillOnce(IncrementArg1());
 | 
						|
//
 | 
						|
// You can also refer to the entire argument tuple and its type by
 | 
						|
// 'args' and 'args_type', and refer to the mock function type and its
 | 
						|
// return type by 'function_type' and 'return_type'.
 | 
						|
//
 | 
						|
// Note that you don't need to specify the types of the mock function
 | 
						|
// arguments.  However rest assured that your code is still type-safe:
 | 
						|
// you'll get a compiler error if *arg1 doesn't support the ++
 | 
						|
// operator, or if the type of ++(*arg1) isn't compatible with the
 | 
						|
// mock function's return type, for example.
 | 
						|
//
 | 
						|
// Sometimes you'll want to parameterize the action.   For that you can use
 | 
						|
// another macro:
 | 
						|
//
 | 
						|
//   ACTION_P(name, param_name) { statements; }
 | 
						|
//
 | 
						|
// For example:
 | 
						|
//
 | 
						|
//   ACTION_P(Add, n) { return arg0 + n; }
 | 
						|
//
 | 
						|
// will allow you to write:
 | 
						|
//
 | 
						|
//   ...WillOnce(Add(5));
 | 
						|
//
 | 
						|
// Note that you don't need to provide the type of the parameter
 | 
						|
// either.  If you need to reference the type of a parameter named
 | 
						|
// 'foo', you can write 'foo_type'.  For example, in the body of
 | 
						|
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
 | 
						|
// of 'n'.
 | 
						|
//
 | 
						|
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
 | 
						|
// multi-parameter actions.
 | 
						|
//
 | 
						|
// For the purpose of typing, you can view
 | 
						|
//
 | 
						|
//   ACTION_Pk(Foo, p1, ..., pk) { ... }
 | 
						|
//
 | 
						|
// as shorthand for
 | 
						|
//
 | 
						|
//   template <typename p1_type, ..., typename pk_type>
 | 
						|
//   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
 | 
						|
//
 | 
						|
// In particular, you can provide the template type arguments
 | 
						|
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
 | 
						|
// although usually you can rely on the compiler to infer the types
 | 
						|
// for you automatically.  You can assign the result of expression
 | 
						|
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
 | 
						|
// pk_type>.  This can be useful when composing actions.
 | 
						|
//
 | 
						|
// You can also overload actions with different numbers of parameters:
 | 
						|
//
 | 
						|
//   ACTION_P(Plus, a) { ... }
 | 
						|
//   ACTION_P2(Plus, a, b) { ... }
 | 
						|
//
 | 
						|
// While it's tempting to always use the ACTION* macros when defining
 | 
						|
// a new action, you should also consider implementing ActionInterface
 | 
						|
// or using MakePolymorphicAction() instead, especially if you need to
 | 
						|
// use the action a lot.  While these approaches require more work,
 | 
						|
// they give you more control on the types of the mock function
 | 
						|
// arguments and the action parameters, which in general leads to
 | 
						|
// better compiler error messages that pay off in the long run.  They
 | 
						|
// also allow overloading actions based on parameter types (as opposed
 | 
						|
// to just based on the number of parameters).
 | 
						|
//
 | 
						|
// CAVEAT:
 | 
						|
//
 | 
						|
// ACTION*() can only be used in a namespace scope as templates cannot be
 | 
						|
// declared inside of a local class.
 | 
						|
// Users can, however, define any local functors (e.g. a lambda) that
 | 
						|
// can be used as actions.
 | 
						|
//
 | 
						|
// MORE INFORMATION:
 | 
						|
//
 | 
						|
// To learn more about using these macros, please search for 'ACTION' on
 | 
						|
// https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
 | 
						|
 | 
						|
// IWYU pragma: private, include "gmock/gmock.h"
 | 
						|
// IWYU pragma: friend gmock/.*
 | 
						|
 | 
						|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 | 
						|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 | 
						|
 | 
						|
#ifndef _WIN32_WCE
 | 
						|
#include <errno.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <functional>
 | 
						|
#include <memory>
 | 
						|
#include <string>
 | 
						|
#include <tuple>
 | 
						|
#include <type_traits>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
#include "gmock/internal/gmock-internal-utils.h"
 | 
						|
#include "gmock/internal/gmock-port.h"
 | 
						|
#include "gmock/internal/gmock-pp.h"
 | 
						|
 | 
						|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100)
 | 
						|
 | 
						|
namespace testing {
 | 
						|
 | 
						|
// To implement an action Foo, define:
 | 
						|
//   1. a class FooAction that implements the ActionInterface interface, and
 | 
						|
//   2. a factory function that creates an Action object from a
 | 
						|
//      const FooAction*.
 | 
						|
//
 | 
						|
// The two-level delegation design follows that of Matcher, providing
 | 
						|
// consistency for extension developers.  It also eases ownership
 | 
						|
// management as Action objects can now be copied like plain values.
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
// BuiltInDefaultValueGetter<T, true>::Get() returns a
 | 
						|
// default-constructed T value.  BuiltInDefaultValueGetter<T,
 | 
						|
// false>::Get() crashes with an error.
 | 
						|
//
 | 
						|
// This primary template is used when kDefaultConstructible is true.
 | 
						|
template <typename T, bool kDefaultConstructible>
 | 
						|
struct BuiltInDefaultValueGetter {
 | 
						|
  static T Get() { return T(); }
 | 
						|
};
 | 
						|
template <typename T>
 | 
						|
struct BuiltInDefaultValueGetter<T, false> {
 | 
						|
  static T Get() {
 | 
						|
    Assert(false, __FILE__, __LINE__,
 | 
						|
           "Default action undefined for the function return type.");
 | 
						|
    return internal::Invalid<T>();
 | 
						|
    // The above statement will never be reached, but is required in
 | 
						|
    // order for this function to compile.
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
 | 
						|
// for type T, which is NULL when T is a raw pointer type, 0 when T is
 | 
						|
// a numeric type, false when T is bool, or "" when T is string or
 | 
						|
// std::string.  In addition, in C++11 and above, it turns a
 | 
						|
// default-constructed T value if T is default constructible.  For any
 | 
						|
// other type T, the built-in default T value is undefined, and the
 | 
						|
// function will abort the process.
 | 
						|
template <typename T>
 | 
						|
class BuiltInDefaultValue {
 | 
						|
 public:
 | 
						|
  // This function returns true if and only if type T has a built-in default
 | 
						|
  // value.
 | 
						|
  static bool Exists() { return ::std::is_default_constructible<T>::value; }
 | 
						|
 | 
						|
  static T Get() {
 | 
						|
    return BuiltInDefaultValueGetter<
 | 
						|
        T, ::std::is_default_constructible<T>::value>::Get();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// This partial specialization says that we use the same built-in
 | 
						|
// default value for T and const T.
 | 
						|
template <typename T>
 | 
						|
class BuiltInDefaultValue<const T> {
 | 
						|
 public:
 | 
						|
  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
 | 
						|
  static T Get() { return BuiltInDefaultValue<T>::Get(); }
 | 
						|
};
 | 
						|
 | 
						|
// This partial specialization defines the default values for pointer
 | 
						|
// types.
 | 
						|
template <typename T>
 | 
						|
class BuiltInDefaultValue<T*> {
 | 
						|
 public:
 | 
						|
  static bool Exists() { return true; }
 | 
						|
  static T* Get() { return nullptr; }
 | 
						|
};
 | 
						|
 | 
						|
// The following specializations define the default values for
 | 
						|
// specific types we care about.
 | 
						|
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
 | 
						|
  template <>                                                     \
 | 
						|
  class BuiltInDefaultValue<type> {                               \
 | 
						|
   public:                                                        \
 | 
						|
    static bool Exists() { return true; }                         \
 | 
						|
    static type Get() { return value; }                           \
 | 
						|
  }
 | 
						|
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
 | 
						|
 | 
						|
// There's no need for a default action for signed wchar_t, as that
 | 
						|
// type is the same as wchar_t for gcc, and invalid for MSVC.
 | 
						|
//
 | 
						|
// There's also no need for a default action for unsigned wchar_t, as
 | 
						|
// that type is the same as unsigned int for gcc, and invalid for
 | 
						|
// MSVC.
 | 
						|
#if GMOCK_WCHAR_T_IS_NATIVE_
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
 | 
						|
#endif
 | 
						|
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);     // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);        // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);    // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
 | 
						|
 | 
						|
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
 | 
						|
 | 
						|
// Partial implementations of metaprogramming types from the standard library
 | 
						|
// not available in C++11.
 | 
						|
 | 
						|
template <typename P>
 | 
						|
struct negation
 | 
						|
    // NOLINTNEXTLINE
 | 
						|
    : std::integral_constant<bool, bool(!P::value)> {};
 | 
						|
 | 
						|
// Base case: with zero predicates the answer is always true.
 | 
						|
template <typename...>
 | 
						|
struct conjunction : std::true_type {};
 | 
						|
 | 
						|
// With a single predicate, the answer is that predicate.
 | 
						|
template <typename P1>
 | 
						|
struct conjunction<P1> : P1 {};
 | 
						|
 | 
						|
// With multiple predicates the answer is the first predicate if that is false,
 | 
						|
// and we recurse otherwise.
 | 
						|
template <typename P1, typename... Ps>
 | 
						|
struct conjunction<P1, Ps...>
 | 
						|
    : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
 | 
						|
 | 
						|
template <typename...>
 | 
						|
struct disjunction : std::false_type {};
 | 
						|
 | 
						|
template <typename P1>
 | 
						|
struct disjunction<P1> : P1 {};
 | 
						|
 | 
						|
template <typename P1, typename... Ps>
 | 
						|
struct disjunction<P1, Ps...>
 | 
						|
    // NOLINTNEXTLINE
 | 
						|
    : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
 | 
						|
 | 
						|
template <typename...>
 | 
						|
using void_t = void;
 | 
						|
 | 
						|
// Detects whether an expression of type `From` can be implicitly converted to
 | 
						|
// `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
 | 
						|
//
 | 
						|
//     An expression e can be implicitly converted to a type T if and only if
 | 
						|
//     the declaration T t=e; is well-formed, for some invented temporary
 | 
						|
//     variable t ([dcl.init]).
 | 
						|
//
 | 
						|
// [conv]/2 implies we can use function argument passing to detect whether this
 | 
						|
// initialization is valid.
 | 
						|
//
 | 
						|
// Note that this is distinct from is_convertible, which requires this be valid:
 | 
						|
//
 | 
						|
//     To test() {
 | 
						|
//       return declval<From>();
 | 
						|
//     }
 | 
						|
//
 | 
						|
// In particular, is_convertible doesn't give the correct answer when `To` and
 | 
						|
// `From` are the same non-moveable type since `declval<From>` will be an rvalue
 | 
						|
// reference, defeating the guaranteed copy elision that would otherwise make
 | 
						|
// this function work.
 | 
						|
//
 | 
						|
// REQUIRES: `From` is not cv void.
 | 
						|
template <typename From, typename To>
 | 
						|
struct is_implicitly_convertible {
 | 
						|
 private:
 | 
						|
  // A function that accepts a parameter of type T. This can be called with type
 | 
						|
  // U successfully only if U is implicitly convertible to T.
 | 
						|
  template <typename T>
 | 
						|
  static void Accept(T);
 | 
						|
 | 
						|
  // A function that creates a value of type T.
 | 
						|
  template <typename T>
 | 
						|
  static T Make();
 | 
						|
 | 
						|
  // An overload be selected when implicit conversion from T to To is possible.
 | 
						|
  template <typename T, typename = decltype(Accept<To>(Make<T>()))>
 | 
						|
  static std::true_type TestImplicitConversion(int);
 | 
						|
 | 
						|
  // A fallback overload selected in all other cases.
 | 
						|
  template <typename T>
 | 
						|
  static std::false_type TestImplicitConversion(...);
 | 
						|
 | 
						|
 public:
 | 
						|
  using type = decltype(TestImplicitConversion<From>(0));
 | 
						|
  static constexpr bool value = type::value;
 | 
						|
};
 | 
						|
 | 
						|
// Like std::invoke_result_t from C++17, but works only for objects with call
 | 
						|
// operators (not e.g. member function pointers, which we don't need specific
 | 
						|
// support for in OnceAction because std::function deals with them).
 | 
						|
template <typename F, typename... Args>
 | 
						|
using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
 | 
						|
 | 
						|
template <typename Void, typename R, typename F, typename... Args>
 | 
						|
struct is_callable_r_impl : std::false_type {};
 | 
						|
 | 
						|
// Specialize the struct for those template arguments where call_result_t is
 | 
						|
// well-formed. When it's not, the generic template above is chosen, resulting
 | 
						|
// in std::false_type.
 | 
						|
template <typename R, typename F, typename... Args>
 | 
						|
struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
 | 
						|
    : std::conditional<
 | 
						|
          std::is_void<R>::value,  //
 | 
						|
          std::true_type,          //
 | 
						|
          is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
 | 
						|
 | 
						|
// Like std::is_invocable_r from C++17, but works only for objects with call
 | 
						|
// operators. See the note on call_result_t.
 | 
						|
template <typename R, typename F, typename... Args>
 | 
						|
using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
 | 
						|
 | 
						|
// Like std::as_const from C++17.
 | 
						|
template <typename T>
 | 
						|
typename std::add_const<T>::type& as_const(T& t) {
 | 
						|
  return t;
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
 | 
						|
// Specialized for function types below.
 | 
						|
template <typename F>
 | 
						|
class OnceAction;
 | 
						|
 | 
						|
// An action that can only be used once.
 | 
						|
//
 | 
						|
// This is accepted by WillOnce, which doesn't require the underlying action to
 | 
						|
// be copy-constructible (only move-constructible), and promises to invoke it as
 | 
						|
// an rvalue reference. This allows the action to work with move-only types like
 | 
						|
// std::move_only_function in a type-safe manner.
 | 
						|
//
 | 
						|
// For example:
 | 
						|
//
 | 
						|
//     // Assume we have some API that needs to accept a unique pointer to some
 | 
						|
//     // non-copyable object Foo.
 | 
						|
//     void AcceptUniquePointer(std::unique_ptr<Foo> foo);
 | 
						|
//
 | 
						|
//     // We can define an action that provides a Foo to that API. Because It
 | 
						|
//     // has to give away its unique pointer, it must not be called more than
 | 
						|
//     // once, so its call operator is &&-qualified.
 | 
						|
//     struct ProvideFoo {
 | 
						|
//       std::unique_ptr<Foo> foo;
 | 
						|
//
 | 
						|
//       void operator()() && {
 | 
						|
//         AcceptUniquePointer(std::move(Foo));
 | 
						|
//       }
 | 
						|
//     };
 | 
						|
//
 | 
						|
//     // This action can be used with WillOnce.
 | 
						|
//     EXPECT_CALL(mock, Call)
 | 
						|
//         .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
 | 
						|
//
 | 
						|
//     // But a call to WillRepeatedly will fail to compile. This is correct,
 | 
						|
//     // since the action cannot correctly be used repeatedly.
 | 
						|
//     EXPECT_CALL(mock, Call)
 | 
						|
//         .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
 | 
						|
//
 | 
						|
// A less-contrived example would be an action that returns an arbitrary type,
 | 
						|
// whose &&-qualified call operator is capable of dealing with move-only types.
 | 
						|
template <typename Result, typename... Args>
 | 
						|
class OnceAction<Result(Args...)> final {
 | 
						|
 private:
 | 
						|
  // True iff we can use the given callable type (or lvalue reference) directly
 | 
						|
  // via StdFunctionAdaptor.
 | 
						|
  template <typename Callable>
 | 
						|
  using IsDirectlyCompatible = internal::conjunction<
 | 
						|
      // It must be possible to capture the callable in StdFunctionAdaptor.
 | 
						|
      std::is_constructible<typename std::decay<Callable>::type, Callable>,
 | 
						|
      // The callable must be compatible with our signature.
 | 
						|
      internal::is_callable_r<Result, typename std::decay<Callable>::type,
 | 
						|
                              Args...>>;
 | 
						|
 | 
						|
  // True iff we can use the given callable type via StdFunctionAdaptor once we
 | 
						|
  // ignore incoming arguments.
 | 
						|
  template <typename Callable>
 | 
						|
  using IsCompatibleAfterIgnoringArguments = internal::conjunction<
 | 
						|
      // It must be possible to capture the callable in a lambda.
 | 
						|
      std::is_constructible<typename std::decay<Callable>::type, Callable>,
 | 
						|
      // The callable must be invocable with zero arguments, returning something
 | 
						|
      // convertible to Result.
 | 
						|
      internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
 | 
						|
 | 
						|
 public:
 | 
						|
  // Construct from a callable that is directly compatible with our mocked
 | 
						|
  // signature: it accepts our function type's arguments and returns something
 | 
						|
  // convertible to our result type.
 | 
						|
  template <typename Callable,
 | 
						|
            typename std::enable_if<
 | 
						|
                internal::conjunction<
 | 
						|
                    // Teach clang on macOS that we're not talking about a
 | 
						|
                    // copy/move constructor here. Otherwise it gets confused
 | 
						|
                    // when checking the is_constructible requirement of our
 | 
						|
                    // traits above.
 | 
						|
                    internal::negation<std::is_same<
 | 
						|
                        OnceAction, typename std::decay<Callable>::type>>,
 | 
						|
                    IsDirectlyCompatible<Callable>>  //
 | 
						|
                ::value,
 | 
						|
                int>::type = 0>
 | 
						|
  OnceAction(Callable&& callable)  // NOLINT
 | 
						|
      : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
 | 
						|
            {}, std::forward<Callable>(callable))) {}
 | 
						|
 | 
						|
  // As above, but for a callable that ignores the mocked function's arguments.
 | 
						|
  template <typename Callable,
 | 
						|
            typename std::enable_if<
 | 
						|
                internal::conjunction<
 | 
						|
                    // Teach clang on macOS that we're not talking about a
 | 
						|
                    // copy/move constructor here. Otherwise it gets confused
 | 
						|
                    // when checking the is_constructible requirement of our
 | 
						|
                    // traits above.
 | 
						|
                    internal::negation<std::is_same<
 | 
						|
                        OnceAction, typename std::decay<Callable>::type>>,
 | 
						|
                    // Exclude callables for which the overload above works.
 | 
						|
                    // We'd rather provide the arguments if possible.
 | 
						|
                    internal::negation<IsDirectlyCompatible<Callable>>,
 | 
						|
                    IsCompatibleAfterIgnoringArguments<Callable>>::value,
 | 
						|
                int>::type = 0>
 | 
						|
  OnceAction(Callable&& callable)  // NOLINT
 | 
						|
                                   // Call the constructor above with a callable
 | 
						|
                                   // that ignores the input arguments.
 | 
						|
      : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
 | 
						|
            std::forward<Callable>(callable)}) {}
 | 
						|
 | 
						|
  // We are naturally copyable because we store only an std::function, but
 | 
						|
  // semantically we should not be copyable.
 | 
						|
  OnceAction(const OnceAction&) = delete;
 | 
						|
  OnceAction& operator=(const OnceAction&) = delete;
 | 
						|
  OnceAction(OnceAction&&) = default;
 | 
						|
 | 
						|
  // Invoke the underlying action callable with which we were constructed,
 | 
						|
  // handing it the supplied arguments.
 | 
						|
  Result Call(Args... args) && {
 | 
						|
    return function_(std::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // An adaptor that wraps a callable that is compatible with our signature and
 | 
						|
  // being invoked as an rvalue reference so that it can be used as an
 | 
						|
  // StdFunctionAdaptor. This throws away type safety, but that's fine because
 | 
						|
  // this is only used by WillOnce, which we know calls at most once.
 | 
						|
  //
 | 
						|
  // Once we have something like std::move_only_function from C++23, we can do
 | 
						|
  // away with this.
 | 
						|
  template <typename Callable>
 | 
						|
  class StdFunctionAdaptor final {
 | 
						|
   public:
 | 
						|
    // A tag indicating that the (otherwise universal) constructor is accepting
 | 
						|
    // the callable itself, instead of e.g. stealing calls for the move
 | 
						|
    // constructor.
 | 
						|
    struct CallableTag final {};
 | 
						|
 | 
						|
    template <typename F>
 | 
						|
    explicit StdFunctionAdaptor(CallableTag, F&& callable)
 | 
						|
        : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
 | 
						|
 | 
						|
    // Rather than explicitly returning Result, we return whatever the wrapped
 | 
						|
    // callable returns. This allows for compatibility with existing uses like
 | 
						|
    // the following, when the mocked function returns void:
 | 
						|
    //
 | 
						|
    //     EXPECT_CALL(mock_fn_, Call)
 | 
						|
    //         .WillOnce([&] {
 | 
						|
    //            [...]
 | 
						|
    //            return 0;
 | 
						|
    //         });
 | 
						|
    //
 | 
						|
    // Such a callable can be turned into std::function<void()>. If we use an
 | 
						|
    // explicit return type of Result here then it *doesn't* work with
 | 
						|
    // std::function, because we'll get a "void function should not return a
 | 
						|
    // value" error.
 | 
						|
    //
 | 
						|
    // We need not worry about incompatible result types because the SFINAE on
 | 
						|
    // OnceAction already checks this for us. std::is_invocable_r_v itself makes
 | 
						|
    // the same allowance for void result types.
 | 
						|
    template <typename... ArgRefs>
 | 
						|
    internal::call_result_t<Callable, ArgRefs...> operator()(
 | 
						|
        ArgRefs&&... args) const {
 | 
						|
      return std::move(*callable_)(std::forward<ArgRefs>(args)...);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    // We must put the callable on the heap so that we are copyable, which
 | 
						|
    // std::function needs.
 | 
						|
    std::shared_ptr<Callable> callable_;
 | 
						|
  };
 | 
						|
 | 
						|
  // An adaptor that makes a callable that accepts zero arguments callable with
 | 
						|
  // our mocked arguments.
 | 
						|
  template <typename Callable>
 | 
						|
  struct IgnoreIncomingArguments {
 | 
						|
    internal::call_result_t<Callable> operator()(Args&&...) {
 | 
						|
      return std::move(callable)();
 | 
						|
    }
 | 
						|
 | 
						|
    Callable callable;
 | 
						|
  };
 | 
						|
 | 
						|
  std::function<Result(Args...)> function_;
 | 
						|
};
 | 
						|
 | 
						|
// When an unexpected function call is encountered, Google Mock will
 | 
						|
// let it return a default value if the user has specified one for its
 | 
						|
// return type, or if the return type has a built-in default value;
 | 
						|
// otherwise Google Mock won't know what value to return and will have
 | 
						|
// to abort the process.
 | 
						|
//
 | 
						|
// The DefaultValue<T> class allows a user to specify the
 | 
						|
// default value for a type T that is both copyable and publicly
 | 
						|
// destructible (i.e. anything that can be used as a function return
 | 
						|
// type).  The usage is:
 | 
						|
//
 | 
						|
//   // Sets the default value for type T to be foo.
 | 
						|
//   DefaultValue<T>::Set(foo);
 | 
						|
template <typename T>
 | 
						|
class DefaultValue {
 | 
						|
 public:
 | 
						|
  // Sets the default value for type T; requires T to be
 | 
						|
  // copy-constructable and have a public destructor.
 | 
						|
  static void Set(T x) {
 | 
						|
    delete producer_;
 | 
						|
    producer_ = new FixedValueProducer(x);
 | 
						|
  }
 | 
						|
 | 
						|
  // Provides a factory function to be called to generate the default value.
 | 
						|
  // This method can be used even if T is only move-constructible, but it is not
 | 
						|
  // limited to that case.
 | 
						|
  typedef T (*FactoryFunction)();
 | 
						|
  static void SetFactory(FactoryFunction factory) {
 | 
						|
    delete producer_;
 | 
						|
    producer_ = new FactoryValueProducer(factory);
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsets the default value for type T.
 | 
						|
  static void Clear() {
 | 
						|
    delete producer_;
 | 
						|
    producer_ = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns true if and only if the user has set the default value for type T.
 | 
						|
  static bool IsSet() { return producer_ != nullptr; }
 | 
						|
 | 
						|
  // Returns true if T has a default return value set by the user or there
 | 
						|
  // exists a built-in default value.
 | 
						|
  static bool Exists() {
 | 
						|
    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the default value for type T if the user has set one;
 | 
						|
  // otherwise returns the built-in default value. Requires that Exists()
 | 
						|
  // is true, which ensures that the return value is well-defined.
 | 
						|
  static T Get() {
 | 
						|
    return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
 | 
						|
                                : producer_->Produce();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  class ValueProducer {
 | 
						|
   public:
 | 
						|
    virtual ~ValueProducer() {}
 | 
						|
    virtual T Produce() = 0;
 | 
						|
  };
 | 
						|
 | 
						|
  class FixedValueProducer : public ValueProducer {
 | 
						|
   public:
 | 
						|
    explicit FixedValueProducer(T value) : value_(value) {}
 | 
						|
    T Produce() override { return value_; }
 | 
						|
 | 
						|
   private:
 | 
						|
    const T value_;
 | 
						|
    FixedValueProducer(const FixedValueProducer&) = delete;
 | 
						|
    FixedValueProducer& operator=(const FixedValueProducer&) = delete;
 | 
						|
  };
 | 
						|
 | 
						|
  class FactoryValueProducer : public ValueProducer {
 | 
						|
   public:
 | 
						|
    explicit FactoryValueProducer(FactoryFunction factory)
 | 
						|
        : factory_(factory) {}
 | 
						|
    T Produce() override { return factory_(); }
 | 
						|
 | 
						|
   private:
 | 
						|
    const FactoryFunction factory_;
 | 
						|
    FactoryValueProducer(const FactoryValueProducer&) = delete;
 | 
						|
    FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
 | 
						|
  };
 | 
						|
 | 
						|
  static ValueProducer* producer_;
 | 
						|
};
 | 
						|
 | 
						|
// This partial specialization allows a user to set default values for
 | 
						|
// reference types.
 | 
						|
template <typename T>
 | 
						|
class DefaultValue<T&> {
 | 
						|
 public:
 | 
						|
  // Sets the default value for type T&.
 | 
						|
  static void Set(T& x) {  // NOLINT
 | 
						|
    address_ = &x;
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsets the default value for type T&.
 | 
						|
  static void Clear() { address_ = nullptr; }
 | 
						|
 | 
						|
  // Returns true if and only if the user has set the default value for type T&.
 | 
						|
  static bool IsSet() { return address_ != nullptr; }
 | 
						|
 | 
						|
  // Returns true if T has a default return value set by the user or there
 | 
						|
  // exists a built-in default value.
 | 
						|
  static bool Exists() {
 | 
						|
    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the default value for type T& if the user has set one;
 | 
						|
  // otherwise returns the built-in default value if there is one;
 | 
						|
  // otherwise aborts the process.
 | 
						|
  static T& Get() {
 | 
						|
    return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
 | 
						|
                               : *address_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  static T* address_;
 | 
						|
};
 | 
						|
 | 
						|
// This specialization allows DefaultValue<void>::Get() to
 | 
						|
// compile.
 | 
						|
template <>
 | 
						|
class DefaultValue<void> {
 | 
						|
 public:
 | 
						|
  static bool Exists() { return true; }
 | 
						|
  static void Get() {}
 | 
						|
};
 | 
						|
 | 
						|
// Points to the user-set default value for type T.
 | 
						|
template <typename T>
 | 
						|
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
 | 
						|
 | 
						|
// Points to the user-set default value for type T&.
 | 
						|
template <typename T>
 | 
						|
T* DefaultValue<T&>::address_ = nullptr;
 | 
						|
 | 
						|
// Implement this interface to define an action for function type F.
 | 
						|
template <typename F>
 | 
						|
class ActionInterface {
 | 
						|
 public:
 | 
						|
  typedef typename internal::Function<F>::Result Result;
 | 
						|
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
  ActionInterface() {}
 | 
						|
  virtual ~ActionInterface() {}
 | 
						|
 | 
						|
  // Performs the action.  This method is not const, as in general an
 | 
						|
  // action can have side effects and be stateful.  For example, a
 | 
						|
  // get-the-next-element-from-the-collection action will need to
 | 
						|
  // remember the current element.
 | 
						|
  virtual Result Perform(const ArgumentTuple& args) = 0;
 | 
						|
 | 
						|
 private:
 | 
						|
  ActionInterface(const ActionInterface&) = delete;
 | 
						|
  ActionInterface& operator=(const ActionInterface&) = delete;
 | 
						|
};
 | 
						|
 | 
						|
template <typename F>
 | 
						|
class Action;
 | 
						|
 | 
						|
// An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
 | 
						|
// object that represents an action to be taken when a mock function of type
 | 
						|
// R(Args...) is called. The implementation of Action<T> is just a
 | 
						|
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
 | 
						|
// can view an object implementing ActionInterface<F> as a concrete action
 | 
						|
// (including its current state), and an Action<F> object as a handle to it.
 | 
						|
template <typename R, typename... Args>
 | 
						|
class Action<R(Args...)> {
 | 
						|
 private:
 | 
						|
  using F = R(Args...);
 | 
						|
 | 
						|
  // Adapter class to allow constructing Action from a legacy ActionInterface.
 | 
						|
  // New code should create Actions from functors instead.
 | 
						|
  struct ActionAdapter {
 | 
						|
    // Adapter must be copyable to satisfy std::function requirements.
 | 
						|
    ::std::shared_ptr<ActionInterface<F>> impl_;
 | 
						|
 | 
						|
    template <typename... InArgs>
 | 
						|
    typename internal::Function<F>::Result operator()(InArgs&&... args) {
 | 
						|
      return impl_->Perform(
 | 
						|
          ::std::forward_as_tuple(::std::forward<InArgs>(args)...));
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template <typename G>
 | 
						|
  using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
 | 
						|
 | 
						|
 public:
 | 
						|
  typedef typename internal::Function<F>::Result Result;
 | 
						|
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
  // Constructs a null Action.  Needed for storing Action objects in
 | 
						|
  // STL containers.
 | 
						|
  Action() {}
 | 
						|
 | 
						|
  // Construct an Action from a specified callable.
 | 
						|
  // This cannot take std::function directly, because then Action would not be
 | 
						|
  // directly constructible from lambda (it would require two conversions).
 | 
						|
  template <
 | 
						|
      typename G,
 | 
						|
      typename = typename std::enable_if<internal::disjunction<
 | 
						|
          IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
 | 
						|
                                                        G>>::value>::type>
 | 
						|
  Action(G&& fun) {  // NOLINT
 | 
						|
    Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
 | 
						|
  }
 | 
						|
 | 
						|
  // Constructs an Action from its implementation.
 | 
						|
  explicit Action(ActionInterface<F>* impl)
 | 
						|
      : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
 | 
						|
 | 
						|
  // This constructor allows us to turn an Action<Func> object into an
 | 
						|
  // Action<F>, as long as F's arguments can be implicitly converted
 | 
						|
  // to Func's and Func's return type can be implicitly converted to F's.
 | 
						|
  template <typename Func>
 | 
						|
  Action(const Action<Func>& action)  // NOLINT
 | 
						|
      : fun_(action.fun_) {}
 | 
						|
 | 
						|
  // Returns true if and only if this is the DoDefault() action.
 | 
						|
  bool IsDoDefault() const { return fun_ == nullptr; }
 | 
						|
 | 
						|
  // Performs the action.  Note that this method is const even though
 | 
						|
  // the corresponding method in ActionInterface is not.  The reason
 | 
						|
  // is that a const Action<F> means that it cannot be re-bound to
 | 
						|
  // another concrete action, not that the concrete action it binds to
 | 
						|
  // cannot change state.  (Think of the difference between a const
 | 
						|
  // pointer and a pointer to const.)
 | 
						|
  Result Perform(ArgumentTuple args) const {
 | 
						|
    if (IsDoDefault()) {
 | 
						|
      internal::IllegalDoDefault(__FILE__, __LINE__);
 | 
						|
    }
 | 
						|
    return internal::Apply(fun_, ::std::move(args));
 | 
						|
  }
 | 
						|
 | 
						|
  // An action can be used as a OnceAction, since it's obviously safe to call it
 | 
						|
  // once.
 | 
						|
  operator OnceAction<F>() const {  // NOLINT
 | 
						|
    // Return a OnceAction-compatible callable that calls Perform with the
 | 
						|
    // arguments it is provided. We could instead just return fun_, but then
 | 
						|
    // we'd need to handle the IsDoDefault() case separately.
 | 
						|
    struct OA {
 | 
						|
      Action<F> action;
 | 
						|
 | 
						|
      R operator()(Args... args) && {
 | 
						|
        return action.Perform(
 | 
						|
            std::forward_as_tuple(std::forward<Args>(args)...));
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    return OA{*this};
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename G>
 | 
						|
  friend class Action;
 | 
						|
 | 
						|
  template <typename G>
 | 
						|
  void Init(G&& g, ::std::true_type) {
 | 
						|
    fun_ = ::std::forward<G>(g);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename G>
 | 
						|
  void Init(G&& g, ::std::false_type) {
 | 
						|
    fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename FunctionImpl>
 | 
						|
  struct IgnoreArgs {
 | 
						|
    template <typename... InArgs>
 | 
						|
    Result operator()(const InArgs&...) const {
 | 
						|
      return function_impl();
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionImpl function_impl;
 | 
						|
  };
 | 
						|
 | 
						|
  // fun_ is an empty function if and only if this is the DoDefault() action.
 | 
						|
  ::std::function<F> fun_;
 | 
						|
};
 | 
						|
 | 
						|
// The PolymorphicAction class template makes it easy to implement a
 | 
						|
// polymorphic action (i.e. an action that can be used in mock
 | 
						|
// functions of than one type, e.g. Return()).
 | 
						|
//
 | 
						|
// To define a polymorphic action, a user first provides a COPYABLE
 | 
						|
// implementation class that has a Perform() method template:
 | 
						|
//
 | 
						|
//   class FooAction {
 | 
						|
//    public:
 | 
						|
//     template <typename Result, typename ArgumentTuple>
 | 
						|
//     Result Perform(const ArgumentTuple& args) const {
 | 
						|
//       // Processes the arguments and returns a result, using
 | 
						|
//       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
 | 
						|
//     }
 | 
						|
//     ...
 | 
						|
//   };
 | 
						|
//
 | 
						|
// Then the user creates the polymorphic action using
 | 
						|
// MakePolymorphicAction(object) where object has type FooAction.  See
 | 
						|
// the definition of Return(void) and SetArgumentPointee<N>(value) for
 | 
						|
// complete examples.
 | 
						|
template <typename Impl>
 | 
						|
class PolymorphicAction {
 | 
						|
 public:
 | 
						|
  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
 | 
						|
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    return Action<F>(new MonomorphicImpl<F>(impl_));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename F>
 | 
						|
  class MonomorphicImpl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename internal::Function<F>::Result Result;
 | 
						|
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
 | 
						|
 | 
						|
    Result Perform(const ArgumentTuple& args) override {
 | 
						|
      return impl_.template Perform<Result>(args);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    Impl impl_;
 | 
						|
  };
 | 
						|
 | 
						|
  Impl impl_;
 | 
						|
};
 | 
						|
 | 
						|
// Creates an Action from its implementation and returns it.  The
 | 
						|
// created Action object owns the implementation.
 | 
						|
template <typename F>
 | 
						|
Action<F> MakeAction(ActionInterface<F>* impl) {
 | 
						|
  return Action<F>(impl);
 | 
						|
}
 | 
						|
 | 
						|
// Creates a polymorphic action from its implementation.  This is
 | 
						|
// easier to use than the PolymorphicAction<Impl> constructor as it
 | 
						|
// doesn't require you to explicitly write the template argument, e.g.
 | 
						|
//
 | 
						|
//   MakePolymorphicAction(foo);
 | 
						|
// vs
 | 
						|
//   PolymorphicAction<TypeOfFoo>(foo);
 | 
						|
template <typename Impl>
 | 
						|
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
 | 
						|
  return PolymorphicAction<Impl>(impl);
 | 
						|
}
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
// Helper struct to specialize ReturnAction to execute a move instead of a copy
 | 
						|
// on return. Useful for move-only types, but could be used on any type.
 | 
						|
template <typename T>
 | 
						|
struct ByMoveWrapper {
 | 
						|
  explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
 | 
						|
  T payload;
 | 
						|
};
 | 
						|
 | 
						|
// The general implementation of Return(R). Specializations follow below.
 | 
						|
template <typename R>
 | 
						|
class ReturnAction final {
 | 
						|
 public:
 | 
						|
  explicit ReturnAction(R value) : value_(std::move(value)) {}
 | 
						|
 | 
						|
  template <typename U, typename... Args,
 | 
						|
            typename = typename std::enable_if<conjunction<
 | 
						|
                // See the requirements documented on Return.
 | 
						|
                negation<std::is_same<void, U>>,  //
 | 
						|
                negation<std::is_reference<U>>,   //
 | 
						|
                std::is_convertible<R, U>,        //
 | 
						|
                std::is_move_constructible<U>>::value>::type>
 | 
						|
  operator OnceAction<U(Args...)>() && {  // NOLINT
 | 
						|
    return Impl<U>(std::move(value_));
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename U, typename... Args,
 | 
						|
            typename = typename std::enable_if<conjunction<
 | 
						|
                // See the requirements documented on Return.
 | 
						|
                negation<std::is_same<void, U>>,   //
 | 
						|
                negation<std::is_reference<U>>,    //
 | 
						|
                std::is_convertible<const R&, U>,  //
 | 
						|
                std::is_copy_constructible<U>>::value>::type>
 | 
						|
  operator Action<U(Args...)>() const {  // NOLINT
 | 
						|
    return Impl<U>(value_);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // Implements the Return(x) action for a mock function that returns type U.
 | 
						|
  template <typename U>
 | 
						|
  class Impl final {
 | 
						|
   public:
 | 
						|
    // The constructor used when the return value is allowed to move from the
 | 
						|
    // input value (i.e. we are converting to OnceAction).
 | 
						|
    explicit Impl(R&& input_value)
 | 
						|
        : state_(new State(std::move(input_value))) {}
 | 
						|
 | 
						|
    // The constructor used when the return value is not allowed to move from
 | 
						|
    // the input value (i.e. we are converting to Action).
 | 
						|
    explicit Impl(const R& input_value) : state_(new State(input_value)) {}
 | 
						|
 | 
						|
    U operator()() && { return std::move(state_->value); }
 | 
						|
    U operator()() const& { return state_->value; }
 | 
						|
 | 
						|
   private:
 | 
						|
    // We put our state on the heap so that the compiler-generated copy/move
 | 
						|
    // constructors work correctly even when U is a reference-like type. This is
 | 
						|
    // necessary only because we eagerly create State::value (see the note on
 | 
						|
    // that symbol for details). If we instead had only the input value as a
 | 
						|
    // member then the default constructors would work fine.
 | 
						|
    //
 | 
						|
    // For example, when R is std::string and U is std::string_view, value is a
 | 
						|
    // reference to the string backed by input_value. The copy constructor would
 | 
						|
    // copy both, so that we wind up with a new input_value object (with the
 | 
						|
    // same contents) and a reference to the *old* input_value object rather
 | 
						|
    // than the new one.
 | 
						|
    struct State {
 | 
						|
      explicit State(const R& input_value_in)
 | 
						|
          : input_value(input_value_in),
 | 
						|
            // Make an implicit conversion to Result before initializing the U
 | 
						|
            // object we store, avoiding calling any explicit constructor of U
 | 
						|
            // from R.
 | 
						|
            //
 | 
						|
            // This simulates the language rules: a function with return type U
 | 
						|
            // that does `return R()` requires R to be implicitly convertible to
 | 
						|
            // U, and uses that path for the conversion, even U Result has an
 | 
						|
            // explicit constructor from R.
 | 
						|
            value(ImplicitCast_<U>(internal::as_const(input_value))) {}
 | 
						|
 | 
						|
      // As above, but for the case where we're moving from the ReturnAction
 | 
						|
      // object because it's being used as a OnceAction.
 | 
						|
      explicit State(R&& input_value_in)
 | 
						|
          : input_value(std::move(input_value_in)),
 | 
						|
            // For the same reason as above we make an implicit conversion to U
 | 
						|
            // before initializing the value.
 | 
						|
            //
 | 
						|
            // Unlike above we provide the input value as an rvalue to the
 | 
						|
            // implicit conversion because this is a OnceAction: it's fine if it
 | 
						|
            // wants to consume the input value.
 | 
						|
            value(ImplicitCast_<U>(std::move(input_value))) {}
 | 
						|
 | 
						|
      // A copy of the value originally provided by the user. We retain this in
 | 
						|
      // addition to the value of the mock function's result type below in case
 | 
						|
      // the latter is a reference-like type. See the std::string_view example
 | 
						|
      // in the documentation on Return.
 | 
						|
      R input_value;
 | 
						|
 | 
						|
      // The value we actually return, as the type returned by the mock function
 | 
						|
      // itself.
 | 
						|
      //
 | 
						|
      // We eagerly initialize this here, rather than lazily doing the implicit
 | 
						|
      // conversion automatically each time Perform is called, for historical
 | 
						|
      // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
 | 
						|
      // made the Action<U()> conversion operator eagerly convert the R value to
 | 
						|
      // U, but without keeping the R alive. This broke the use case discussed
 | 
						|
      // in the documentation for Return, making reference-like types such as
 | 
						|
      // std::string_view not safe to use as U where the input type R is a
 | 
						|
      // value-like type such as std::string.
 | 
						|
      //
 | 
						|
      // The example the commit gave was not very clear, nor was the issue
 | 
						|
      // thread (https://github.com/google/googlemock/issues/86), but it seems
 | 
						|
      // the worry was about reference-like input types R that flatten to a
 | 
						|
      // value-like type U when being implicitly converted. An example of this
 | 
						|
      // is std::vector<bool>::reference, which is often a proxy type with an
 | 
						|
      // reference to the underlying vector:
 | 
						|
      //
 | 
						|
      //     // Helper method: have the mock function return bools according
 | 
						|
      //     // to the supplied script.
 | 
						|
      //     void SetActions(MockFunction<bool(size_t)>& mock,
 | 
						|
      //                     const std::vector<bool>& script) {
 | 
						|
      //       for (size_t i = 0; i < script.size(); ++i) {
 | 
						|
      //         EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
 | 
						|
      //       }
 | 
						|
      //     }
 | 
						|
      //
 | 
						|
      //     TEST(Foo, Bar) {
 | 
						|
      //       // Set actions using a temporary vector, whose operator[]
 | 
						|
      //       // returns proxy objects that references that will be
 | 
						|
      //       // dangling once the call to SetActions finishes and the
 | 
						|
      //       // vector is destroyed.
 | 
						|
      //       MockFunction<bool(size_t)> mock;
 | 
						|
      //       SetActions(mock, {false, true});
 | 
						|
      //
 | 
						|
      //       EXPECT_FALSE(mock.AsStdFunction()(0));
 | 
						|
      //       EXPECT_TRUE(mock.AsStdFunction()(1));
 | 
						|
      //     }
 | 
						|
      //
 | 
						|
      // This eager conversion helps with a simple case like this, but doesn't
 | 
						|
      // fully make these types work in general. For example the following still
 | 
						|
      // uses a dangling reference:
 | 
						|
      //
 | 
						|
      //     TEST(Foo, Baz) {
 | 
						|
      //       MockFunction<std::vector<std::string>()> mock;
 | 
						|
      //
 | 
						|
      //       // Return the same vector twice, and then the empty vector
 | 
						|
      //       // thereafter.
 | 
						|
      //       auto action = Return(std::initializer_list<std::string>{
 | 
						|
      //           "taco", "burrito",
 | 
						|
      //       });
 | 
						|
      //
 | 
						|
      //       EXPECT_CALL(mock, Call)
 | 
						|
      //           .WillOnce(action)
 | 
						|
      //           .WillOnce(action)
 | 
						|
      //           .WillRepeatedly(Return(std::vector<std::string>{}));
 | 
						|
      //
 | 
						|
      //       EXPECT_THAT(mock.AsStdFunction()(),
 | 
						|
      //                   ElementsAre("taco", "burrito"));
 | 
						|
      //       EXPECT_THAT(mock.AsStdFunction()(),
 | 
						|
      //                   ElementsAre("taco", "burrito"));
 | 
						|
      //       EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
 | 
						|
      //     }
 | 
						|
      //
 | 
						|
      U value;
 | 
						|
    };
 | 
						|
 | 
						|
    const std::shared_ptr<State> state_;
 | 
						|
  };
 | 
						|
 | 
						|
  R value_;
 | 
						|
};
 | 
						|
 | 
						|
// A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
 | 
						|
//
 | 
						|
// This version applies the type system-defeating hack of moving from T even in
 | 
						|
// the const call operator, checking at runtime that it isn't called more than
 | 
						|
// once, since the user has declared their intent to do so by using ByMove.
 | 
						|
template <typename T>
 | 
						|
class ReturnAction<ByMoveWrapper<T>> final {
 | 
						|
 public:
 | 
						|
  explicit ReturnAction(ByMoveWrapper<T> wrapper)
 | 
						|
      : state_(new State(std::move(wrapper.payload))) {}
 | 
						|
 | 
						|
  T operator()() const {
 | 
						|
    GTEST_CHECK_(!state_->called)
 | 
						|
        << "A ByMove() action must be performed at most once.";
 | 
						|
 | 
						|
    state_->called = true;
 | 
						|
    return std::move(state_->value);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // We store our state on the heap so that we are copyable as required by
 | 
						|
  // Action, despite the fact that we are stateful and T may not be copyable.
 | 
						|
  struct State {
 | 
						|
    explicit State(T&& value_in) : value(std::move(value_in)) {}
 | 
						|
 | 
						|
    T value;
 | 
						|
    bool called = false;
 | 
						|
  };
 | 
						|
 | 
						|
  const std::shared_ptr<State> state_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the ReturnNull() action.
 | 
						|
class ReturnNullAction {
 | 
						|
 public:
 | 
						|
  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
 | 
						|
  // this is enforced by returning nullptr, and in non-C++11 by asserting a
 | 
						|
  // pointer type on compile time.
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  static Result Perform(const ArgumentTuple&) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the Return() action.
 | 
						|
class ReturnVoidAction {
 | 
						|
 public:
 | 
						|
  // Allows Return() to be used in any void-returning function.
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  static void Perform(const ArgumentTuple&) {
 | 
						|
    static_assert(std::is_void<Result>::value, "Result should be void.");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic ReturnRef(x) action, which can be used
 | 
						|
// in any function that returns a reference to the type of x,
 | 
						|
// regardless of the argument types.
 | 
						|
template <typename T>
 | 
						|
class ReturnRefAction {
 | 
						|
 public:
 | 
						|
  // Constructs a ReturnRefAction object from the reference to be returned.
 | 
						|
  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
 | 
						|
 | 
						|
  // This template type conversion operator allows ReturnRef(x) to be
 | 
						|
  // used in ANY function that returns a reference to x's type.
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    // Asserts that the function return type is a reference.  This
 | 
						|
    // catches the user error of using ReturnRef(x) when Return(x)
 | 
						|
    // should be used, and generates some helpful error message.
 | 
						|
    static_assert(std::is_reference<Result>::value,
 | 
						|
                  "use Return instead of ReturnRef to return a value");
 | 
						|
    return Action<F>(new Impl<F>(ref_));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // Implements the ReturnRef(x) action for a particular function type F.
 | 
						|
  template <typename F>
 | 
						|
  class Impl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
 | 
						|
 | 
						|
    Result Perform(const ArgumentTuple&) override { return ref_; }
 | 
						|
 | 
						|
   private:
 | 
						|
    T& ref_;
 | 
						|
  };
 | 
						|
 | 
						|
  T& ref_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
 | 
						|
// used in any function that returns a reference to the type of x,
 | 
						|
// regardless of the argument types.
 | 
						|
template <typename T>
 | 
						|
class ReturnRefOfCopyAction {
 | 
						|
 public:
 | 
						|
  // Constructs a ReturnRefOfCopyAction object from the reference to
 | 
						|
  // be returned.
 | 
						|
  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
 | 
						|
 | 
						|
  // This template type conversion operator allows ReturnRefOfCopy(x) to be
 | 
						|
  // used in ANY function that returns a reference to x's type.
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    // Asserts that the function return type is a reference.  This
 | 
						|
    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
 | 
						|
    // should be used, and generates some helpful error message.
 | 
						|
    static_assert(std::is_reference<Result>::value,
 | 
						|
                  "use Return instead of ReturnRefOfCopy to return a value");
 | 
						|
    return Action<F>(new Impl<F>(value_));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
 | 
						|
  template <typename F>
 | 
						|
  class Impl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit Impl(const T& value) : value_(value) {}  // NOLINT
 | 
						|
 | 
						|
    Result Perform(const ArgumentTuple&) override { return value_; }
 | 
						|
 | 
						|
   private:
 | 
						|
    T value_;
 | 
						|
  };
 | 
						|
 | 
						|
  const T value_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic ReturnRoundRobin(v) action, which can be
 | 
						|
// used in any function that returns the element_type of v.
 | 
						|
template <typename T>
 | 
						|
class ReturnRoundRobinAction {
 | 
						|
 public:
 | 
						|
  explicit ReturnRoundRobinAction(std::vector<T> values) {
 | 
						|
    GTEST_CHECK_(!values.empty())
 | 
						|
        << "ReturnRoundRobin requires at least one element.";
 | 
						|
    state_->values = std::move(values);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  T operator()(Args&&...) const {
 | 
						|
    return state_->Next();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  struct State {
 | 
						|
    T Next() {
 | 
						|
      T ret_val = values[i++];
 | 
						|
      if (i == values.size()) i = 0;
 | 
						|
      return ret_val;
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<T> values;
 | 
						|
    size_t i = 0;
 | 
						|
  };
 | 
						|
  std::shared_ptr<State> state_ = std::make_shared<State>();
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic DoDefault() action.
 | 
						|
class DoDefaultAction {
 | 
						|
 public:
 | 
						|
  // This template type conversion operator allows DoDefault() to be
 | 
						|
  // used in any function.
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    return Action<F>();
 | 
						|
  }  // NOLINT
 | 
						|
};
 | 
						|
 | 
						|
// Implements the Assign action to set a given pointer referent to a
 | 
						|
// particular value.
 | 
						|
template <typename T1, typename T2>
 | 
						|
class AssignAction {
 | 
						|
 public:
 | 
						|
  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
 | 
						|
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  void Perform(const ArgumentTuple& /* args */) const {
 | 
						|
    *ptr_ = value_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  T1* const ptr_;
 | 
						|
  const T2 value_;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef GTEST_OS_WINDOWS_MOBILE
 | 
						|
 | 
						|
// Implements the SetErrnoAndReturn action to simulate return from
 | 
						|
// various system calls and libc functions.
 | 
						|
template <typename T>
 | 
						|
class SetErrnoAndReturnAction {
 | 
						|
 public:
 | 
						|
  SetErrnoAndReturnAction(int errno_value, T result)
 | 
						|
      : errno_(errno_value), result_(result) {}
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  Result Perform(const ArgumentTuple& /* args */) const {
 | 
						|
    errno = errno_;
 | 
						|
    return result_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  const int errno_;
 | 
						|
  const T result_;
 | 
						|
};
 | 
						|
 | 
						|
#endif  // !GTEST_OS_WINDOWS_MOBILE
 | 
						|
 | 
						|
// Implements the SetArgumentPointee<N>(x) action for any function
 | 
						|
// whose N-th argument (0-based) is a pointer to x's type.
 | 
						|
template <size_t N, typename A, typename = void>
 | 
						|
struct SetArgumentPointeeAction {
 | 
						|
  A value;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(const Args&... args) const {
 | 
						|
    *::std::get<N>(std::tie(args...)) = value;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the Invoke(object_ptr, &Class::Method) action.
 | 
						|
template <class Class, typename MethodPtr>
 | 
						|
struct InvokeMethodAction {
 | 
						|
  Class* const obj_ptr;
 | 
						|
  const MethodPtr method_ptr;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  auto operator()(Args&&... args) const
 | 
						|
      -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
 | 
						|
    return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the InvokeWithoutArgs(f) action.  The template argument
 | 
						|
// FunctionImpl is the implementation type of f, which can be either a
 | 
						|
// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
 | 
						|
// Action<F> as long as f's type is compatible with F.
 | 
						|
template <typename FunctionImpl>
 | 
						|
struct InvokeWithoutArgsAction {
 | 
						|
  FunctionImpl function_impl;
 | 
						|
 | 
						|
  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
 | 
						|
  // compatible with f.
 | 
						|
  template <typename... Args>
 | 
						|
  auto operator()(const Args&...) -> decltype(function_impl()) {
 | 
						|
    return function_impl();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
 | 
						|
template <class Class, typename MethodPtr>
 | 
						|
struct InvokeMethodWithoutArgsAction {
 | 
						|
  Class* const obj_ptr;
 | 
						|
  const MethodPtr method_ptr;
 | 
						|
 | 
						|
  using ReturnType =
 | 
						|
      decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  ReturnType operator()(const Args&...) const {
 | 
						|
    return (obj_ptr->*method_ptr)();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the IgnoreResult(action) action.
 | 
						|
template <typename A>
 | 
						|
class IgnoreResultAction {
 | 
						|
 public:
 | 
						|
  explicit IgnoreResultAction(const A& action) : action_(action) {}
 | 
						|
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    // Assert statement belongs here because this is the best place to verify
 | 
						|
    // conditions on F. It produces the clearest error messages
 | 
						|
    // in most compilers.
 | 
						|
    // Impl really belongs in this scope as a local class but can't
 | 
						|
    // because MSVC produces duplicate symbols in different translation units
 | 
						|
    // in this case. Until MS fixes that bug we put Impl into the class scope
 | 
						|
    // and put the typedef both here (for use in assert statement) and
 | 
						|
    // in the Impl class. But both definitions must be the same.
 | 
						|
    typedef typename internal::Function<F>::Result Result;
 | 
						|
 | 
						|
    // Asserts at compile time that F returns void.
 | 
						|
    static_assert(std::is_void<Result>::value, "Result type should be void.");
 | 
						|
 | 
						|
    return Action<F>(new Impl<F>(action_));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename F>
 | 
						|
  class Impl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename internal::Function<F>::Result Result;
 | 
						|
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit Impl(const A& action) : action_(action) {}
 | 
						|
 | 
						|
    void Perform(const ArgumentTuple& args) override {
 | 
						|
      // Performs the action and ignores its result.
 | 
						|
      action_.Perform(args);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    // Type OriginalFunction is the same as F except that its return
 | 
						|
    // type is IgnoredValue.
 | 
						|
    typedef
 | 
						|
        typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
 | 
						|
 | 
						|
    const Action<OriginalFunction> action_;
 | 
						|
  };
 | 
						|
 | 
						|
  const A action_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename InnerAction, size_t... I>
 | 
						|
struct WithArgsAction {
 | 
						|
  InnerAction inner_action;
 | 
						|
 | 
						|
  // The signature of the function as seen by the inner action, given an out
 | 
						|
  // action with the given result and argument types.
 | 
						|
  template <typename R, typename... Args>
 | 
						|
  using InnerSignature =
 | 
						|
      R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
 | 
						|
 | 
						|
  // Rather than a call operator, we must define conversion operators to
 | 
						|
  // particular action types. This is necessary for embedded actions like
 | 
						|
  // DoDefault(), which rely on an action conversion operators rather than
 | 
						|
  // providing a call operator because even with a particular set of arguments
 | 
						|
  // they don't have a fixed return type.
 | 
						|
 | 
						|
  template <
 | 
						|
      typename R, typename... Args,
 | 
						|
      typename std::enable_if<
 | 
						|
          std::is_convertible<InnerAction,
 | 
						|
                              // Unfortunately we can't use the InnerSignature
 | 
						|
                              // alias here; MSVC complains about the I
 | 
						|
                              // parameter pack not being expanded (error C3520)
 | 
						|
                              // despite it being expanded in the type alias.
 | 
						|
                              // TupleElement is also an MSVC workaround.
 | 
						|
                              // See its definition for details.
 | 
						|
                              OnceAction<R(internal::TupleElement<
 | 
						|
                                           I, std::tuple<Args...>>...)>>::value,
 | 
						|
          int>::type = 0>
 | 
						|
  operator OnceAction<R(Args...)>() && {  // NOLINT
 | 
						|
    struct OA {
 | 
						|
      OnceAction<InnerSignature<R, Args...>> inner_action;
 | 
						|
 | 
						|
      R operator()(Args&&... args) && {
 | 
						|
        return std::move(inner_action)
 | 
						|
            .Call(std::get<I>(
 | 
						|
                std::forward_as_tuple(std::forward<Args>(args)...))...);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    return OA{std::move(inner_action)};
 | 
						|
  }
 | 
						|
 | 
						|
  template <
 | 
						|
      typename R, typename... Args,
 | 
						|
      typename std::enable_if<
 | 
						|
          std::is_convertible<const InnerAction&,
 | 
						|
                              // Unfortunately we can't use the InnerSignature
 | 
						|
                              // alias here; MSVC complains about the I
 | 
						|
                              // parameter pack not being expanded (error C3520)
 | 
						|
                              // despite it being expanded in the type alias.
 | 
						|
                              // TupleElement is also an MSVC workaround.
 | 
						|
                              // See its definition for details.
 | 
						|
                              Action<R(internal::TupleElement<
 | 
						|
                                       I, std::tuple<Args...>>...)>>::value,
 | 
						|
          int>::type = 0>
 | 
						|
  operator Action<R(Args...)>() const {  // NOLINT
 | 
						|
    Action<InnerSignature<R, Args...>> converted(inner_action);
 | 
						|
 | 
						|
    return [converted](Args&&... args) -> R {
 | 
						|
      return converted.Perform(std::forward_as_tuple(
 | 
						|
          std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
 | 
						|
    };
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename... Actions>
 | 
						|
class DoAllAction;
 | 
						|
 | 
						|
// Base case: only a single action.
 | 
						|
template <typename FinalAction>
 | 
						|
class DoAllAction<FinalAction> {
 | 
						|
 public:
 | 
						|
  struct UserConstructorTag {};
 | 
						|
 | 
						|
  template <typename T>
 | 
						|
  explicit DoAllAction(UserConstructorTag, T&& action)
 | 
						|
      : final_action_(std::forward<T>(action)) {}
 | 
						|
 | 
						|
  // Rather than a call operator, we must define conversion operators to
 | 
						|
  // particular action types. This is necessary for embedded actions like
 | 
						|
  // DoDefault(), which rely on an action conversion operators rather than
 | 
						|
  // providing a call operator because even with a particular set of arguments
 | 
						|
  // they don't have a fixed return type.
 | 
						|
 | 
						|
  template <typename R, typename... Args,
 | 
						|
            typename std::enable_if<
 | 
						|
                std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
 | 
						|
                int>::type = 0>
 | 
						|
  operator OnceAction<R(Args...)>() && {  // NOLINT
 | 
						|
    return std::move(final_action_);
 | 
						|
  }
 | 
						|
 | 
						|
  template <
 | 
						|
      typename R, typename... Args,
 | 
						|
      typename std::enable_if<
 | 
						|
          std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
 | 
						|
          int>::type = 0>
 | 
						|
  operator Action<R(Args...)>() const {  // NOLINT
 | 
						|
    return final_action_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  FinalAction final_action_;
 | 
						|
};
 | 
						|
 | 
						|
// Recursive case: support N actions by calling the initial action and then
 | 
						|
// calling through to the base class containing N-1 actions.
 | 
						|
template <typename InitialAction, typename... OtherActions>
 | 
						|
class DoAllAction<InitialAction, OtherActions...>
 | 
						|
    : private DoAllAction<OtherActions...> {
 | 
						|
 private:
 | 
						|
  using Base = DoAllAction<OtherActions...>;
 | 
						|
 | 
						|
  // The type of reference that should be provided to an initial action for a
 | 
						|
  // mocked function parameter of type T.
 | 
						|
  //
 | 
						|
  // There are two quirks here:
 | 
						|
  //
 | 
						|
  //  *  Unlike most forwarding functions, we pass scalars through by value.
 | 
						|
  //     This isn't strictly necessary because an lvalue reference would work
 | 
						|
  //     fine too and be consistent with other non-reference types, but it's
 | 
						|
  //     perhaps less surprising.
 | 
						|
  //
 | 
						|
  //     For example if the mocked function has signature void(int), then it
 | 
						|
  //     might seem surprising for the user's initial action to need to be
 | 
						|
  //     convertible to Action<void(const int&)>. This is perhaps less
 | 
						|
  //     surprising for a non-scalar type where there may be a performance
 | 
						|
  //     impact, or it might even be impossible, to pass by value.
 | 
						|
  //
 | 
						|
  //  *  More surprisingly, `const T&` is often not a const reference type.
 | 
						|
  //     By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
 | 
						|
  //     U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
 | 
						|
  //     U&. In other words, we may hand over a non-const reference.
 | 
						|
  //
 | 
						|
  //     So for example, given some non-scalar type Obj we have the following
 | 
						|
  //     mappings:
 | 
						|
  //
 | 
						|
  //            T               InitialActionArgType<T>
 | 
						|
  //         -------            -----------------------
 | 
						|
  //         Obj                const Obj&
 | 
						|
  //         Obj&               Obj&
 | 
						|
  //         Obj&&              Obj&
 | 
						|
  //         const Obj          const Obj&
 | 
						|
  //         const Obj&         const Obj&
 | 
						|
  //         const Obj&&        const Obj&
 | 
						|
  //
 | 
						|
  //     In other words, the initial actions get a mutable view of an non-scalar
 | 
						|
  //     argument if and only if the mock function itself accepts a non-const
 | 
						|
  //     reference type. They are never given an rvalue reference to an
 | 
						|
  //     non-scalar type.
 | 
						|
  //
 | 
						|
  //     This situation makes sense if you imagine use with a matcher that is
 | 
						|
  //     designed to write through a reference. For example, if the caller wants
 | 
						|
  //     to fill in a reference argument and then return a canned value:
 | 
						|
  //
 | 
						|
  //         EXPECT_CALL(mock, Call)
 | 
						|
  //             .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
 | 
						|
  //
 | 
						|
  template <typename T>
 | 
						|
  using InitialActionArgType =
 | 
						|
      typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
 | 
						|
 | 
						|
 public:
 | 
						|
  struct UserConstructorTag {};
 | 
						|
 | 
						|
  template <typename T, typename... U>
 | 
						|
  explicit DoAllAction(UserConstructorTag, T&& initial_action,
 | 
						|
                       U&&... other_actions)
 | 
						|
      : Base({}, std::forward<U>(other_actions)...),
 | 
						|
        initial_action_(std::forward<T>(initial_action)) {}
 | 
						|
 | 
						|
  template <typename R, typename... Args,
 | 
						|
            typename std::enable_if<
 | 
						|
                conjunction<
 | 
						|
                    // Both the initial action and the rest must support
 | 
						|
                    // conversion to OnceAction.
 | 
						|
                    std::is_convertible<
 | 
						|
                        InitialAction,
 | 
						|
                        OnceAction<void(InitialActionArgType<Args>...)>>,
 | 
						|
                    std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
 | 
						|
                int>::type = 0>
 | 
						|
  operator OnceAction<R(Args...)>() && {  // NOLINT
 | 
						|
    // Return an action that first calls the initial action with arguments
 | 
						|
    // filtered through InitialActionArgType, then forwards arguments directly
 | 
						|
    // to the base class to deal with the remaining actions.
 | 
						|
    struct OA {
 | 
						|
      OnceAction<void(InitialActionArgType<Args>...)> initial_action;
 | 
						|
      OnceAction<R(Args...)> remaining_actions;
 | 
						|
 | 
						|
      R operator()(Args... args) && {
 | 
						|
        std::move(initial_action)
 | 
						|
            .Call(static_cast<InitialActionArgType<Args>>(args)...);
 | 
						|
 | 
						|
        return std::move(remaining_actions).Call(std::forward<Args>(args)...);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    return OA{
 | 
						|
        std::move(initial_action_),
 | 
						|
        std::move(static_cast<Base&>(*this)),
 | 
						|
    };
 | 
						|
  }
 | 
						|
 | 
						|
  template <
 | 
						|
      typename R, typename... Args,
 | 
						|
      typename std::enable_if<
 | 
						|
          conjunction<
 | 
						|
              // Both the initial action and the rest must support conversion to
 | 
						|
              // Action.
 | 
						|
              std::is_convertible<const InitialAction&,
 | 
						|
                                  Action<void(InitialActionArgType<Args>...)>>,
 | 
						|
              std::is_convertible<const Base&, Action<R(Args...)>>>::value,
 | 
						|
          int>::type = 0>
 | 
						|
  operator Action<R(Args...)>() const {  // NOLINT
 | 
						|
    // Return an action that first calls the initial action with arguments
 | 
						|
    // filtered through InitialActionArgType, then forwards arguments directly
 | 
						|
    // to the base class to deal with the remaining actions.
 | 
						|
    struct OA {
 | 
						|
      Action<void(InitialActionArgType<Args>...)> initial_action;
 | 
						|
      Action<R(Args...)> remaining_actions;
 | 
						|
 | 
						|
      R operator()(Args... args) const {
 | 
						|
        initial_action.Perform(std::forward_as_tuple(
 | 
						|
            static_cast<InitialActionArgType<Args>>(args)...));
 | 
						|
 | 
						|
        return remaining_actions.Perform(
 | 
						|
            std::forward_as_tuple(std::forward<Args>(args)...));
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    return OA{
 | 
						|
        initial_action_,
 | 
						|
        static_cast<const Base&>(*this),
 | 
						|
    };
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  InitialAction initial_action_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T, typename... Params>
 | 
						|
struct ReturnNewAction {
 | 
						|
  T* operator()() const {
 | 
						|
    return internal::Apply(
 | 
						|
        [](const Params&... unpacked_params) {
 | 
						|
          return new T(unpacked_params...);
 | 
						|
        },
 | 
						|
        params);
 | 
						|
  }
 | 
						|
  std::tuple<Params...> params;
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k>
 | 
						|
struct ReturnArgAction {
 | 
						|
  template <typename... Args,
 | 
						|
            typename = typename std::enable_if<(k < sizeof...(Args))>::type>
 | 
						|
  auto operator()(Args&&... args) const -> decltype(std::get<k>(
 | 
						|
      std::forward_as_tuple(std::forward<Args>(args)...))) {
 | 
						|
    return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k, typename Ptr>
 | 
						|
struct SaveArgAction {
 | 
						|
  Ptr pointer;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(const Args&... args) const {
 | 
						|
    *pointer = std::get<k>(std::tie(args...));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k, typename Ptr>
 | 
						|
struct SaveArgPointeeAction {
 | 
						|
  Ptr pointer;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(const Args&... args) const {
 | 
						|
    *pointer = *std::get<k>(std::tie(args...));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k, typename T>
 | 
						|
struct SetArgRefereeAction {
 | 
						|
  T value;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(Args&&... args) const {
 | 
						|
    using argk_type =
 | 
						|
        typename ::std::tuple_element<k, std::tuple<Args...>>::type;
 | 
						|
    static_assert(std::is_lvalue_reference<argk_type>::value,
 | 
						|
                  "Argument must be a reference type.");
 | 
						|
    std::get<k>(std::tie(args...)) = value;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k, typename I1, typename I2>
 | 
						|
struct SetArrayArgumentAction {
 | 
						|
  I1 first;
 | 
						|
  I2 last;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(const Args&... args) const {
 | 
						|
    auto value = std::get<k>(std::tie(args...));
 | 
						|
    for (auto it = first; it != last; ++it, (void)++value) {
 | 
						|
      *value = *it;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k>
 | 
						|
struct DeleteArgAction {
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(const Args&... args) const {
 | 
						|
    delete std::get<k>(std::tie(args...));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename Ptr>
 | 
						|
struct ReturnPointeeAction {
 | 
						|
  Ptr pointer;
 | 
						|
  template <typename... Args>
 | 
						|
  auto operator()(const Args&...) const -> decltype(*pointer) {
 | 
						|
    return *pointer;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
#if GTEST_HAS_EXCEPTIONS
 | 
						|
template <typename T>
 | 
						|
struct ThrowAction {
 | 
						|
  T exception;
 | 
						|
  // We use a conversion operator to adapt to any return type.
 | 
						|
  template <typename R, typename... Args>
 | 
						|
  operator Action<R(Args...)>() const {  // NOLINT
 | 
						|
    T copy = exception;
 | 
						|
    return [copy](Args...) -> R { throw copy; };
 | 
						|
  }
 | 
						|
};
 | 
						|
#endif  // GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
 | 
						|
// An Unused object can be implicitly constructed from ANY value.
 | 
						|
// This is handy when defining actions that ignore some or all of the
 | 
						|
// mock function arguments.  For example, given
 | 
						|
//
 | 
						|
//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
 | 
						|
//   MOCK_METHOD3(Bar, double(int index, double x, double y));
 | 
						|
//
 | 
						|
// instead of
 | 
						|
//
 | 
						|
//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
 | 
						|
//     return sqrt(x*x + y*y);
 | 
						|
//   }
 | 
						|
//   double DistanceToOriginWithIndex(int index, double x, double y) {
 | 
						|
//     return sqrt(x*x + y*y);
 | 
						|
//   }
 | 
						|
//   ...
 | 
						|
//   EXPECT_CALL(mock, Foo("abc", _, _))
 | 
						|
//       .WillOnce(Invoke(DistanceToOriginWithLabel));
 | 
						|
//   EXPECT_CALL(mock, Bar(5, _, _))
 | 
						|
//       .WillOnce(Invoke(DistanceToOriginWithIndex));
 | 
						|
//
 | 
						|
// you could write
 | 
						|
//
 | 
						|
//   // We can declare any uninteresting argument as Unused.
 | 
						|
//   double DistanceToOrigin(Unused, double x, double y) {
 | 
						|
//     return sqrt(x*x + y*y);
 | 
						|
//   }
 | 
						|
//   ...
 | 
						|
//   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
 | 
						|
//   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
 | 
						|
typedef internal::IgnoredValue Unused;
 | 
						|
 | 
						|
// Creates an action that does actions a1, a2, ..., sequentially in
 | 
						|
// each invocation. All but the last action will have a readonly view of the
 | 
						|
// arguments.
 | 
						|
template <typename... Action>
 | 
						|
internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
 | 
						|
    Action&&... action) {
 | 
						|
  return internal::DoAllAction<typename std::decay<Action>::type...>(
 | 
						|
      {}, std::forward<Action>(action)...);
 | 
						|
}
 | 
						|
 | 
						|
// WithArg<k>(an_action) creates an action that passes the k-th
 | 
						|
// (0-based) argument of the mock function to an_action and performs
 | 
						|
// it.  It adapts an action accepting one argument to one that accepts
 | 
						|
// multiple arguments.  For convenience, we also provide
 | 
						|
// WithArgs<k>(an_action) (defined below) as a synonym.
 | 
						|
template <size_t k, typename InnerAction>
 | 
						|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
 | 
						|
    InnerAction&& action) {
 | 
						|
  return {std::forward<InnerAction>(action)};
 | 
						|
}
 | 
						|
 | 
						|
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
 | 
						|
// the selected arguments of the mock function to an_action and
 | 
						|
// performs it.  It serves as an adaptor between actions with
 | 
						|
// different argument lists.
 | 
						|
template <size_t k, size_t... ks, typename InnerAction>
 | 
						|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
 | 
						|
WithArgs(InnerAction&& action) {
 | 
						|
  return {std::forward<InnerAction>(action)};
 | 
						|
}
 | 
						|
 | 
						|
// WithoutArgs(inner_action) can be used in a mock function with a
 | 
						|
// non-empty argument list to perform inner_action, which takes no
 | 
						|
// argument.  In other words, it adapts an action accepting no
 | 
						|
// argument to one that accepts (and ignores) arguments.
 | 
						|
template <typename InnerAction>
 | 
						|
internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
 | 
						|
    InnerAction&& action) {
 | 
						|
  return {std::forward<InnerAction>(action)};
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns a value.
 | 
						|
//
 | 
						|
// The returned type can be used with a mock function returning a non-void,
 | 
						|
// non-reference type U as follows:
 | 
						|
//
 | 
						|
//  *  If R is convertible to U and U is move-constructible, then the action can
 | 
						|
//     be used with WillOnce.
 | 
						|
//
 | 
						|
//  *  If const R& is convertible to U and U is copy-constructible, then the
 | 
						|
//     action can be used with both WillOnce and WillRepeatedly.
 | 
						|
//
 | 
						|
// The mock expectation contains the R value from which the U return value is
 | 
						|
// constructed (a move/copy of the argument to Return). This means that the R
 | 
						|
// value will survive at least until the mock object's expectations are cleared
 | 
						|
// or the mock object is destroyed, meaning that U can safely be a
 | 
						|
// reference-like type such as std::string_view:
 | 
						|
//
 | 
						|
//     // The mock function returns a view of a copy of the string fed to
 | 
						|
//     // Return. The view is valid even after the action is performed.
 | 
						|
//     MockFunction<std::string_view()> mock;
 | 
						|
//     EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
 | 
						|
//     const std::string_view result = mock.AsStdFunction()();
 | 
						|
//     EXPECT_EQ("taco", result);
 | 
						|
//
 | 
						|
template <typename R>
 | 
						|
internal::ReturnAction<R> Return(R value) {
 | 
						|
  return internal::ReturnAction<R>(std::move(value));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns NULL.
 | 
						|
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
 | 
						|
  return MakePolymorphicAction(internal::ReturnNullAction());
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns from a void function.
 | 
						|
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
 | 
						|
  return MakePolymorphicAction(internal::ReturnVoidAction());
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns the reference to a variable.
 | 
						|
template <typename R>
 | 
						|
inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
 | 
						|
  return internal::ReturnRefAction<R>(x);
 | 
						|
}
 | 
						|
 | 
						|
// Prevent using ReturnRef on reference to temporary.
 | 
						|
template <typename R, R* = nullptr>
 | 
						|
internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
 | 
						|
 | 
						|
// Creates an action that returns the reference to a copy of the
 | 
						|
// argument.  The copy is created when the action is constructed and
 | 
						|
// lives as long as the action.
 | 
						|
template <typename R>
 | 
						|
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
 | 
						|
  return internal::ReturnRefOfCopyAction<R>(x);
 | 
						|
}
 | 
						|
 | 
						|
// DEPRECATED: use Return(x) directly with WillOnce.
 | 
						|
//
 | 
						|
// Modifies the parent action (a Return() action) to perform a move of the
 | 
						|
// argument instead of a copy.
 | 
						|
// Return(ByMove()) actions can only be executed once and will assert this
 | 
						|
// invariant.
 | 
						|
template <typename R>
 | 
						|
internal::ByMoveWrapper<R> ByMove(R x) {
 | 
						|
  return internal::ByMoveWrapper<R>(std::move(x));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns an element of `vals`. Calling this action will
 | 
						|
// repeatedly return the next value from `vals` until it reaches the end and
 | 
						|
// will restart from the beginning.
 | 
						|
template <typename T>
 | 
						|
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
 | 
						|
  return internal::ReturnRoundRobinAction<T>(std::move(vals));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns an element of `vals`. Calling this action will
 | 
						|
// repeatedly return the next value from `vals` until it reaches the end and
 | 
						|
// will restart from the beginning.
 | 
						|
template <typename T>
 | 
						|
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
 | 
						|
    std::initializer_list<T> vals) {
 | 
						|
  return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that does the default action for the give mock function.
 | 
						|
inline internal::DoDefaultAction DoDefault() {
 | 
						|
  return internal::DoDefaultAction();
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that sets the variable pointed by the N-th
 | 
						|
// (0-based) function argument to 'value'.
 | 
						|
template <size_t N, typename T>
 | 
						|
internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
 | 
						|
  return {std::move(value)};
 | 
						|
}
 | 
						|
 | 
						|
// The following version is DEPRECATED.
 | 
						|
template <size_t N, typename T>
 | 
						|
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
 | 
						|
  return {std::move(value)};
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that sets a pointer referent to a given value.
 | 
						|
template <typename T1, typename T2>
 | 
						|
PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
 | 
						|
  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
 | 
						|
}
 | 
						|
 | 
						|
#ifndef GTEST_OS_WINDOWS_MOBILE
 | 
						|
 | 
						|
// Creates an action that sets errno and returns the appropriate error.
 | 
						|
template <typename T>
 | 
						|
PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
 | 
						|
    int errval, T result) {
 | 
						|
  return MakePolymorphicAction(
 | 
						|
      internal::SetErrnoAndReturnAction<T>(errval, result));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // !GTEST_OS_WINDOWS_MOBILE
 | 
						|
 | 
						|
// Various overloads for Invoke().
 | 
						|
 | 
						|
// Legacy function.
 | 
						|
// Actions can now be implicitly constructed from callables. No need to create
 | 
						|
// wrapper objects.
 | 
						|
// This function exists for backwards compatibility.
 | 
						|
template <typename FunctionImpl>
 | 
						|
typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
 | 
						|
  return std::forward<FunctionImpl>(function_impl);
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that invokes the given method on the given object
 | 
						|
// with the mock function's arguments.
 | 
						|
template <class Class, typename MethodPtr>
 | 
						|
internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
 | 
						|
                                                      MethodPtr method_ptr) {
 | 
						|
  return {obj_ptr, method_ptr};
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that invokes 'function_impl' with no argument.
 | 
						|
template <typename FunctionImpl>
 | 
						|
internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
 | 
						|
InvokeWithoutArgs(FunctionImpl function_impl) {
 | 
						|
  return {std::move(function_impl)};
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that invokes the given method on the given object
 | 
						|
// with no argument.
 | 
						|
template <class Class, typename MethodPtr>
 | 
						|
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
 | 
						|
    Class* obj_ptr, MethodPtr method_ptr) {
 | 
						|
  return {obj_ptr, method_ptr};
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that performs an_action and throws away its
 | 
						|
// result.  In other words, it changes the return type of an_action to
 | 
						|
// void.  an_action MUST NOT return void, or the code won't compile.
 | 
						|
template <typename A>
 | 
						|
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
 | 
						|
  return internal::IgnoreResultAction<A>(an_action);
 | 
						|
}
 | 
						|
 | 
						|
// Creates a reference wrapper for the given L-value.  If necessary,
 | 
						|
// you can explicitly specify the type of the reference.  For example,
 | 
						|
// suppose 'derived' is an object of type Derived, ByRef(derived)
 | 
						|
// would wrap a Derived&.  If you want to wrap a const Base& instead,
 | 
						|
// where Base is a base class of Derived, just write:
 | 
						|
//
 | 
						|
//   ByRef<const Base>(derived)
 | 
						|
//
 | 
						|
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
 | 
						|
// However, it may still be used for consistency with ByMove().
 | 
						|
template <typename T>
 | 
						|
inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
 | 
						|
  return ::std::reference_wrapper<T>(l_value);
 | 
						|
}
 | 
						|
 | 
						|
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
 | 
						|
// instance of type T, constructed on the heap with constructor arguments
 | 
						|
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
 | 
						|
template <typename T, typename... Params>
 | 
						|
internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
 | 
						|
    Params&&... params) {
 | 
						|
  return {std::forward_as_tuple(std::forward<Params>(params)...)};
 | 
						|
}
 | 
						|
 | 
						|
// Action ReturnArg<k>() returns the k-th argument of the mock function.
 | 
						|
template <size_t k>
 | 
						|
internal::ReturnArgAction<k> ReturnArg() {
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
 | 
						|
// mock function to *pointer.
 | 
						|
template <size_t k, typename Ptr>
 | 
						|
internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
 | 
						|
  return {pointer};
 | 
						|
}
 | 
						|
 | 
						|
// Action SaveArgPointee<k>(pointer) saves the value pointed to
 | 
						|
// by the k-th (0-based) argument of the mock function to *pointer.
 | 
						|
template <size_t k, typename Ptr>
 | 
						|
internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
 | 
						|
  return {pointer};
 | 
						|
}
 | 
						|
 | 
						|
// Action SetArgReferee<k>(value) assigns 'value' to the variable
 | 
						|
// referenced by the k-th (0-based) argument of the mock function.
 | 
						|
template <size_t k, typename T>
 | 
						|
internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
 | 
						|
    T&& value) {
 | 
						|
  return {std::forward<T>(value)};
 | 
						|
}
 | 
						|
 | 
						|
// Action SetArrayArgument<k>(first, last) copies the elements in
 | 
						|
// source range [first, last) to the array pointed to by the k-th
 | 
						|
// (0-based) argument, which can be either a pointer or an
 | 
						|
// iterator. The action does not take ownership of the elements in the
 | 
						|
// source range.
 | 
						|
template <size_t k, typename I1, typename I2>
 | 
						|
internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
 | 
						|
                                                             I2 last) {
 | 
						|
  return {first, last};
 | 
						|
}
 | 
						|
 | 
						|
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
 | 
						|
// function.
 | 
						|
template <size_t k>
 | 
						|
internal::DeleteArgAction<k> DeleteArg() {
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
// This action returns the value pointed to by 'pointer'.
 | 
						|
template <typename Ptr>
 | 
						|
internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
 | 
						|
  return {pointer};
 | 
						|
}
 | 
						|
 | 
						|
// Action Throw(exception) can be used in a mock function of any type
 | 
						|
// to throw the given exception.  Any copyable value can be thrown.
 | 
						|
#if GTEST_HAS_EXCEPTIONS
 | 
						|
template <typename T>
 | 
						|
internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
 | 
						|
  return {std::forward<T>(exception)};
 | 
						|
}
 | 
						|
#endif  // GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
 | 
						|
// defines an action that can be used in a mock function.  Typically,
 | 
						|
// these actions only care about a subset of the arguments of the mock
 | 
						|
// function.  For example, if such an action only uses the second
 | 
						|
// argument, it can be used in any mock function that takes >= 2
 | 
						|
// arguments where the type of the second argument is compatible.
 | 
						|
//
 | 
						|
// Therefore, the action implementation must be prepared to take more
 | 
						|
// arguments than it needs.  The ExcessiveArg type is used to
 | 
						|
// represent those excessive arguments.  In order to keep the compiler
 | 
						|
// error messages tractable, we define it in the testing namespace
 | 
						|
// instead of testing::internal.  However, this is an INTERNAL TYPE
 | 
						|
// and subject to change without notice, so a user MUST NOT USE THIS
 | 
						|
// TYPE DIRECTLY.
 | 
						|
struct ExcessiveArg {};
 | 
						|
 | 
						|
// Builds an implementation of an Action<> for some particular signature, using
 | 
						|
// a class defined by an ACTION* macro.
 | 
						|
template <typename F, typename Impl>
 | 
						|
struct ActionImpl;
 | 
						|
 | 
						|
template <typename Impl>
 | 
						|
struct ImplBase {
 | 
						|
  struct Holder {
 | 
						|
    // Allows each copy of the Action<> to get to the Impl.
 | 
						|
    explicit operator const Impl&() const { return *ptr; }
 | 
						|
    std::shared_ptr<Impl> ptr;
 | 
						|
  };
 | 
						|
  using type = typename std::conditional<std::is_constructible<Impl>::value,
 | 
						|
                                         Impl, Holder>::type;
 | 
						|
};
 | 
						|
 | 
						|
template <typename R, typename... Args, typename Impl>
 | 
						|
struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
 | 
						|
  using Base = typename ImplBase<Impl>::type;
 | 
						|
  using function_type = R(Args...);
 | 
						|
  using args_type = std::tuple<Args...>;
 | 
						|
 | 
						|
  ActionImpl() = default;  // Only defined if appropriate for Base.
 | 
						|
  explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
 | 
						|
 | 
						|
  R operator()(Args&&... arg) const {
 | 
						|
    static constexpr size_t kMaxArgs =
 | 
						|
        sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
 | 
						|
    return Apply(MakeIndexSequence<kMaxArgs>{},
 | 
						|
                 MakeIndexSequence<10 - kMaxArgs>{},
 | 
						|
                 args_type{std::forward<Args>(arg)...});
 | 
						|
  }
 | 
						|
 | 
						|
  template <std::size_t... arg_id, std::size_t... excess_id>
 | 
						|
  R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
 | 
						|
          const args_type& args) const {
 | 
						|
    // Impl need not be specific to the signature of action being implemented;
 | 
						|
    // only the implementing function body needs to have all of the specific
 | 
						|
    // types instantiated.  Up to 10 of the args that are provided by the
 | 
						|
    // args_type get passed, followed by a dummy of unspecified type for the
 | 
						|
    // remainder up to 10 explicit args.
 | 
						|
    static constexpr ExcessiveArg kExcessArg{};
 | 
						|
    return static_cast<const Impl&>(*this)
 | 
						|
        .template gmock_PerformImpl<
 | 
						|
            /*function_type=*/function_type, /*return_type=*/R,
 | 
						|
            /*args_type=*/args_type,
 | 
						|
            /*argN_type=*/
 | 
						|
            typename std::tuple_element<arg_id, args_type>::type...>(
 | 
						|
            /*args=*/args, std::get<arg_id>(args)...,
 | 
						|
            ((void)excess_id, kExcessArg)...);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Stores a default-constructed Impl as part of the Action<>'s
 | 
						|
// std::function<>. The Impl should be trivial to copy.
 | 
						|
template <typename F, typename Impl>
 | 
						|
::testing::Action<F> MakeAction() {
 | 
						|
  return ::testing::Action<F>(ActionImpl<F, Impl>());
 | 
						|
}
 | 
						|
 | 
						|
// Stores just the one given instance of Impl.
 | 
						|
template <typename F, typename Impl>
 | 
						|
::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
 | 
						|
  return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
 | 
						|
}
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
 | 
						|
  , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
 | 
						|
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_                 \
 | 
						|
  const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
 | 
						|
      GMOCK_INTERNAL_ARG_UNUSED, , 10)
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
 | 
						|
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
 | 
						|
  const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
 | 
						|
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
 | 
						|
#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
 | 
						|
#define GMOCK_ACTION_TYPE_PARAMS_(params) \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
 | 
						|
  , param##_type gmock_p##i
 | 
						|
#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
 | 
						|
  , std::forward<param##_type>(gmock_p##i)
 | 
						|
#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
 | 
						|
  , param(::std::forward<param##_type>(gmock_p##i))
 | 
						|
#define GMOCK_ACTION_INIT_PARAMS_(params) \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
 | 
						|
#define GMOCK_ACTION_FIELD_PARAMS_(params) \
 | 
						|
  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_ACTION(name, full_name, params)                         \
 | 
						|
  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
 | 
						|
  class full_name {                                                            \
 | 
						|
   public:                                                                     \
 | 
						|
    explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))               \
 | 
						|
        : impl_(std::make_shared<gmock_Impl>(                                  \
 | 
						|
              GMOCK_ACTION_GVALUE_PARAMS_(params))) {}                         \
 | 
						|
    full_name(const full_name&) = default;                                     \
 | 
						|
    full_name(full_name&&) noexcept = default;                                 \
 | 
						|
    template <typename F>                                                      \
 | 
						|
    operator ::testing::Action<F>() const {                                    \
 | 
						|
      return ::testing::internal::MakeAction<F>(impl_);                        \
 | 
						|
    }                                                                          \
 | 
						|
                                                                               \
 | 
						|
   private:                                                                    \
 | 
						|
    class gmock_Impl {                                                         \
 | 
						|
     public:                                                                   \
 | 
						|
      explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))            \
 | 
						|
          : GMOCK_ACTION_INIT_PARAMS_(params) {}                               \
 | 
						|
      template <typename function_type, typename return_type,                  \
 | 
						|
                typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>         \
 | 
						|
      return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const;  \
 | 
						|
      GMOCK_ACTION_FIELD_PARAMS_(params)                                       \
 | 
						|
    };                                                                         \
 | 
						|
    std::shared_ptr<const gmock_Impl> impl_;                                   \
 | 
						|
  };                                                                           \
 | 
						|
  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
 | 
						|
  inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \
 | 
						|
      GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_;        \
 | 
						|
  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
 | 
						|
  inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \
 | 
						|
      GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                              \
 | 
						|
    return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                       \
 | 
						|
        GMOCK_ACTION_GVALUE_PARAMS_(params));                                  \
 | 
						|
  }                                                                            \
 | 
						|
  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
 | 
						|
  template <typename function_type, typename return_type, typename args_type,  \
 | 
						|
            GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                 \
 | 
						|
  return_type                                                                  \
 | 
						|
  full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
 | 
						|
      GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
 | 
						|
// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
 | 
						|
#define ACTION(name)                                                          \
 | 
						|
  class name##Action {                                                        \
 | 
						|
   public:                                                                    \
 | 
						|
    explicit name##Action() noexcept {}                                       \
 | 
						|
    name##Action(const name##Action&) noexcept {}                             \
 | 
						|
    template <typename F>                                                     \
 | 
						|
    operator ::testing::Action<F>() const {                                   \
 | 
						|
      return ::testing::internal::MakeAction<F, gmock_Impl>();                \
 | 
						|
    }                                                                         \
 | 
						|
                                                                              \
 | 
						|
   private:                                                                   \
 | 
						|
    class gmock_Impl {                                                        \
 | 
						|
     public:                                                                  \
 | 
						|
      template <typename function_type, typename return_type,                 \
 | 
						|
                typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
 | 
						|
      return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
 | 
						|
    };                                                                        \
 | 
						|
  };                                                                          \
 | 
						|
  inline name##Action name() GTEST_MUST_USE_RESULT_;                          \
 | 
						|
  inline name##Action name() { return name##Action(); }                       \
 | 
						|
  template <typename function_type, typename return_type, typename args_type, \
 | 
						|
            GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
 | 
						|
  return_type name##Action::gmock_Impl::gmock_PerformImpl(                    \
 | 
						|
      GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
 | 
						|
 | 
						|
#define ACTION_P(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P2(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P3(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P4(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P5(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P6(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P7(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P8(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P9(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P10(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
 | 
						|
 | 
						|
}  // namespace testing
 | 
						|
 | 
						|
GTEST_DISABLE_MSC_WARNINGS_POP_()  // 4100
 | 
						|
 | 
						|
#endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 |