302 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2008 Google Inc.
 | 
						|
// All Rights Reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//     * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//     * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//     * Neither the name of Google Inc. nor the names of its
 | 
						|
// contributors may be used to endorse or promote products derived from
 | 
						|
// this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
// Author: wan@google.com (Zhanyong Wan)
 | 
						|
 | 
						|
// This sample shows how to test common properties of multiple
 | 
						|
// implementations of the same interface (aka interface tests).  We
 | 
						|
// put the code to be tested and the tests in the same file for
 | 
						|
// simplicity.
 | 
						|
 | 
						|
#include <vector>
 | 
						|
#include <gtest/gtest.h>
 | 
						|
 | 
						|
// Section 1. the interface and its implementations.
 | 
						|
 | 
						|
// The prime table interface.
 | 
						|
class PrimeTable {
 | 
						|
 public:
 | 
						|
  virtual ~PrimeTable() {}
 | 
						|
 | 
						|
  // Returns true iff n is a prime number.
 | 
						|
  virtual bool IsPrime(int n) const = 0;
 | 
						|
 | 
						|
  // Returns the smallest prime number greater than p; or returns -1
 | 
						|
  // if the next prime is beyond the capacity of the table.
 | 
						|
  virtual int GetNextPrime(int p) const = 0;
 | 
						|
};
 | 
						|
 | 
						|
// Implementation #1 calculates the primes on-the-fly.
 | 
						|
class OnTheFlyPrimeTable : public PrimeTable {
 | 
						|
 public:
 | 
						|
  virtual bool IsPrime(int n) const {
 | 
						|
    if (n <= 1) return false;
 | 
						|
 | 
						|
    for (int i = 2; i*i <= n; i++) {
 | 
						|
      // n is divisible by an integer other than 1 and itself.
 | 
						|
      if ((n % i) == 0) return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual int GetNextPrime(int p) const {
 | 
						|
    for (int n = p + 1; n > 0; n++) {
 | 
						|
      if (IsPrime(n)) return n;
 | 
						|
    }
 | 
						|
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implementation #2 pre-calculates the primes and stores the result
 | 
						|
// in a vector.
 | 
						|
class PreCalculatedPrimeTable : public PrimeTable {
 | 
						|
 public:
 | 
						|
  // 'max' specifies the maximum number the prime table holds.
 | 
						|
  explicit PreCalculatedPrimeTable(int max) : is_prime_(max + 1) {
 | 
						|
    CalculatePrimesUpTo(max);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool IsPrime(int n) const {
 | 
						|
    return 0 <= n && n < is_prime_.size() && is_prime_[n];
 | 
						|
  }
 | 
						|
 | 
						|
  virtual int GetNextPrime(int p) const {
 | 
						|
    for (int n = p + 1; n < is_prime_.size(); n++) {
 | 
						|
      if (is_prime_[n]) return n;
 | 
						|
    }
 | 
						|
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  void CalculatePrimesUpTo(int max) {
 | 
						|
    fill(is_prime_.begin(), is_prime_.end(), true);
 | 
						|
    is_prime_[0] = is_prime_[1] = false;
 | 
						|
 | 
						|
    for (int i = 2; i <= max; i++) {
 | 
						|
      if (!is_prime_[i]) continue;
 | 
						|
 | 
						|
      // Marks all multiples of i (except i itself) as non-prime.
 | 
						|
      for (int j = 2*i; j <= max; j += i) {
 | 
						|
        is_prime_[j] = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<bool> is_prime_;
 | 
						|
};
 | 
						|
 | 
						|
// Sections 2. the tests.
 | 
						|
 | 
						|
// First, we define some factory functions for creating instances of
 | 
						|
// the implementations.  You may be able to skip this step if all your
 | 
						|
// implementations can be constructed the same way.
 | 
						|
 | 
						|
template <class T>
 | 
						|
PrimeTable* CreatePrimeTable();
 | 
						|
 | 
						|
template <>
 | 
						|
PrimeTable* CreatePrimeTable<OnTheFlyPrimeTable>() {
 | 
						|
  return new OnTheFlyPrimeTable;
 | 
						|
}
 | 
						|
 | 
						|
template <>
 | 
						|
PrimeTable* CreatePrimeTable<PreCalculatedPrimeTable>() {
 | 
						|
  return new PreCalculatedPrimeTable(10000);
 | 
						|
}
 | 
						|
 | 
						|
// Then we define a test fixture class template.
 | 
						|
template <class T>
 | 
						|
class PrimeTableTest : public testing::Test {
 | 
						|
 protected:
 | 
						|
  // The ctor calls the factory function to create a prime table
 | 
						|
  // implemented by T.
 | 
						|
  PrimeTableTest() : table_(CreatePrimeTable<T>()) {}
 | 
						|
 | 
						|
  virtual ~PrimeTableTest() { delete table_; }
 | 
						|
 | 
						|
  // Note that we test an implementation via the base interface
 | 
						|
  // instead of the actual implementation class.  This is important
 | 
						|
  // for keeping the tests close to the real world scenario, where the
 | 
						|
  // implementation is invoked via the base interface.  It avoids
 | 
						|
  // got-yas where the implementation class has a method that shadows
 | 
						|
  // a method with the same name (but slightly different argument
 | 
						|
  // types) in the base interface, for example.
 | 
						|
  PrimeTable* const table_;
 | 
						|
};
 | 
						|
 | 
						|
using testing::Types;
 | 
						|
 | 
						|
#ifdef GTEST_HAS_TYPED_TEST
 | 
						|
 | 
						|
// Google Test offers two ways for reusing tests for different types.
 | 
						|
// The first is called "typed tests".  You should use it if you
 | 
						|
// already know *all* the types you are gonna exercise when you write
 | 
						|
// the tests.
 | 
						|
 | 
						|
// To write a typed test case, first use
 | 
						|
//
 | 
						|
//   TYPED_TEST_CASE(TestCaseName, TypeList);
 | 
						|
//
 | 
						|
// to declare it and specify the type parameters.  As with TEST_F,
 | 
						|
// TestCaseName must match the test fixture name.
 | 
						|
 | 
						|
// The list of types we want to test.
 | 
						|
typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> Implementations;
 | 
						|
 | 
						|
TYPED_TEST_CASE(PrimeTableTest, Implementations);
 | 
						|
 | 
						|
// Then use TYPED_TEST(TestCaseName, TestName) to define a typed test,
 | 
						|
// similar to TEST_F.
 | 
						|
TYPED_TEST(PrimeTableTest, ReturnsFalseForNonPrimes) {
 | 
						|
  // Inside the test body, you can refer to the type parameter by
 | 
						|
  // TypeParam, and refer to the fixture class by TestFixture.  We
 | 
						|
  // don't need them in this example.
 | 
						|
 | 
						|
  // Since we are in the template world, C++ requires explicitly
 | 
						|
  // writing 'this->' when referring to members of the fixture class.
 | 
						|
  // This is something you have to learn to live with.
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(-5));
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(0));
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(1));
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(4));
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(6));
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(100));
 | 
						|
}
 | 
						|
 | 
						|
TYPED_TEST(PrimeTableTest, ReturnsTrueForPrimes) {
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(2));
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(3));
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(5));
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(7));
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(11));
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(131));
 | 
						|
}
 | 
						|
 | 
						|
TYPED_TEST(PrimeTableTest, CanGetNextPrime) {
 | 
						|
  EXPECT_EQ(2, this->table_->GetNextPrime(0));
 | 
						|
  EXPECT_EQ(3, this->table_->GetNextPrime(2));
 | 
						|
  EXPECT_EQ(5, this->table_->GetNextPrime(3));
 | 
						|
  EXPECT_EQ(7, this->table_->GetNextPrime(5));
 | 
						|
  EXPECT_EQ(11, this->table_->GetNextPrime(7));
 | 
						|
  EXPECT_EQ(131, this->table_->GetNextPrime(128));
 | 
						|
}
 | 
						|
 | 
						|
// That's it!  Google Test will repeat each TYPED_TEST for each type
 | 
						|
// in the type list specified in TYPED_TEST_CASE.  Sit back and be
 | 
						|
// happy that you don't have to define them multiple times.
 | 
						|
 | 
						|
#endif  // GTEST_HAS_TYPED_TEST
 | 
						|
 | 
						|
#ifdef GTEST_HAS_TYPED_TEST_P
 | 
						|
 | 
						|
// Sometimes, however, you don't yet know all the types that you want
 | 
						|
// to test when you write the tests.  For example, if you are the
 | 
						|
// author of an interface and expect other people to implement it, you
 | 
						|
// might want to write a set of tests to make sure each implementation
 | 
						|
// conforms to some basic requirements, but you don't know what
 | 
						|
// implementations will be written in the future.
 | 
						|
//
 | 
						|
// How can you write the tests without committing to the type
 | 
						|
// parameters?  That's what "type-parameterized tests" can do for you.
 | 
						|
// It is a bit more involved than typed tests, but in return you get a
 | 
						|
// test pattern that can be reused in many contexts, which is a big
 | 
						|
// win.  Here's how you do it:
 | 
						|
 | 
						|
// First, define a test fixture class template.  Here we just reuse
 | 
						|
// the PrimeTableTest fixture defined earlier:
 | 
						|
 | 
						|
template <class T>
 | 
						|
class PrimeTableTest2 : public PrimeTableTest<T> {
 | 
						|
};
 | 
						|
 | 
						|
// Then, declare the test case.  The argument is the name of the test
 | 
						|
// fixture, and also the name of the test case (as usual).  The _P
 | 
						|
// suffix is for "parameterized" or "pattern".
 | 
						|
TYPED_TEST_CASE_P(PrimeTableTest2);
 | 
						|
 | 
						|
// Next, use TYPED_TEST_P(TestCaseName, TestName) to define a test,
 | 
						|
// similar to what you do with TEST_F.
 | 
						|
TYPED_TEST_P(PrimeTableTest2, ReturnsFalseForNonPrimes) {
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(-5));
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(0));
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(1));
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(4));
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(6));
 | 
						|
  EXPECT_FALSE(this->table_->IsPrime(100));
 | 
						|
}
 | 
						|
 | 
						|
TYPED_TEST_P(PrimeTableTest2, ReturnsTrueForPrimes) {
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(2));
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(3));
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(5));
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(7));
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(11));
 | 
						|
  EXPECT_TRUE(this->table_->IsPrime(131));
 | 
						|
}
 | 
						|
 | 
						|
TYPED_TEST_P(PrimeTableTest2, CanGetNextPrime) {
 | 
						|
  EXPECT_EQ(2, this->table_->GetNextPrime(0));
 | 
						|
  EXPECT_EQ(3, this->table_->GetNextPrime(2));
 | 
						|
  EXPECT_EQ(5, this->table_->GetNextPrime(3));
 | 
						|
  EXPECT_EQ(7, this->table_->GetNextPrime(5));
 | 
						|
  EXPECT_EQ(11, this->table_->GetNextPrime(7));
 | 
						|
  EXPECT_EQ(131, this->table_->GetNextPrime(128));
 | 
						|
}
 | 
						|
 | 
						|
// Type-parameterized tests involve one extra step: you have to
 | 
						|
// enumerate the tests you defined:
 | 
						|
REGISTER_TYPED_TEST_CASE_P(
 | 
						|
    PrimeTableTest2,  // The first argument is the test case name.
 | 
						|
    // The rest of the arguments are the test names.
 | 
						|
    ReturnsFalseForNonPrimes, ReturnsTrueForPrimes, CanGetNextPrime);
 | 
						|
 | 
						|
// At this point the test pattern is done.  However, you don't have
 | 
						|
// any real test yet as you haven't said which types you want to run
 | 
						|
// the tests with.
 | 
						|
 | 
						|
// To turn the abstract test pattern into real tests, you instantiate
 | 
						|
// it with a list of types.  Usually the test pattern will be defined
 | 
						|
// in a .h file, and anyone can #include and instantiate it.  You can
 | 
						|
// even instantiate it more than once in the same program.  To tell
 | 
						|
// different instances apart, you give each of them a name, which will
 | 
						|
// become part of the test case name and can be used in test filters.
 | 
						|
 | 
						|
// The list of types we want to test.  Note that it doesn't have to be
 | 
						|
// defined at the time we write the TYPED_TEST_P()s.
 | 
						|
typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable>
 | 
						|
    PrimeTableImplementations;
 | 
						|
INSTANTIATE_TYPED_TEST_CASE_P(OnTheFlyAndPreCalculated,    // Instance name
 | 
						|
                              PrimeTableTest2,             // Test case name
 | 
						|
                              PrimeTableImplementations);  // Type list
 | 
						|
 | 
						|
#endif  // GTEST_HAS_TYPED_TEST_P
 |