6697 lines
		
	
	
		
			214 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			6697 lines
		
	
	
		
			214 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2007, Google Inc.
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//     * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//     * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//     * Neither the name of Google Inc. nor the names of its
 | 
						|
// contributors may be used to endorse or promote products derived from
 | 
						|
// this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
// Author: wan@google.com (Zhanyong Wan)
 | 
						|
 | 
						|
// Google Mock - a framework for writing C++ mock classes.
 | 
						|
//
 | 
						|
// This file tests some commonly used argument matchers.
 | 
						|
 | 
						|
#include "gmock/gmock-matchers.h"
 | 
						|
#include "gmock/gmock-more-matchers.h"
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
#include <time.h>
 | 
						|
#include <deque>
 | 
						|
#include <functional>
 | 
						|
#include <iostream>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <list>
 | 
						|
#include <map>
 | 
						|
#include <memory>
 | 
						|
#include <set>
 | 
						|
#include <sstream>
 | 
						|
#include <string>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
#include "gmock/gmock.h"
 | 
						|
#include "gtest/gtest.h"
 | 
						|
#include "gtest/gtest-spi.h"
 | 
						|
 | 
						|
#if GTEST_HAS_STD_FORWARD_LIST_
 | 
						|
# include <forward_list>  // NOLINT
 | 
						|
#endif
 | 
						|
 | 
						|
// Disable MSVC2015 warning for std::pair:
 | 
						|
// "decorated name length exceeded, name was truncated".
 | 
						|
#if defined(_MSC_VER) && (_MSC_VER == 1900)
 | 
						|
# pragma warning(disable:4503)
 | 
						|
#endif
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
# include <type_traits>
 | 
						|
#endif
 | 
						|
 | 
						|
namespace testing {
 | 
						|
namespace gmock_matchers_test {
 | 
						|
 | 
						|
using std::greater;
 | 
						|
using std::less;
 | 
						|
using std::list;
 | 
						|
using std::make_pair;
 | 
						|
using std::map;
 | 
						|
using std::multimap;
 | 
						|
using std::multiset;
 | 
						|
using std::ostream;
 | 
						|
using std::pair;
 | 
						|
using std::set;
 | 
						|
using std::stringstream;
 | 
						|
using std::vector;
 | 
						|
using testing::A;
 | 
						|
using testing::AllArgs;
 | 
						|
using testing::AllOf;
 | 
						|
using testing::An;
 | 
						|
using testing::AnyOf;
 | 
						|
using testing::ByRef;
 | 
						|
using testing::ContainsRegex;
 | 
						|
using testing::DoubleEq;
 | 
						|
using testing::DoubleNear;
 | 
						|
using testing::EndsWith;
 | 
						|
using testing::Eq;
 | 
						|
using testing::ExplainMatchResult;
 | 
						|
using testing::Field;
 | 
						|
using testing::FloatEq;
 | 
						|
using testing::FloatNear;
 | 
						|
using testing::Ge;
 | 
						|
using testing::Gt;
 | 
						|
using testing::HasSubstr;
 | 
						|
using testing::IsEmpty;
 | 
						|
using testing::IsNull;
 | 
						|
using testing::Key;
 | 
						|
using testing::Le;
 | 
						|
using testing::Lt;
 | 
						|
using testing::MakeMatcher;
 | 
						|
using testing::MakePolymorphicMatcher;
 | 
						|
using testing::MatchResultListener;
 | 
						|
using testing::Matcher;
 | 
						|
using testing::MatcherCast;
 | 
						|
using testing::MatcherInterface;
 | 
						|
using testing::Matches;
 | 
						|
using testing::MatchesRegex;
 | 
						|
using testing::NanSensitiveDoubleEq;
 | 
						|
using testing::NanSensitiveDoubleNear;
 | 
						|
using testing::NanSensitiveFloatEq;
 | 
						|
using testing::NanSensitiveFloatNear;
 | 
						|
using testing::Ne;
 | 
						|
using testing::Not;
 | 
						|
using testing::NotNull;
 | 
						|
using testing::Pair;
 | 
						|
using testing::Pointee;
 | 
						|
using testing::Pointwise;
 | 
						|
using testing::PolymorphicMatcher;
 | 
						|
using testing::Property;
 | 
						|
using testing::Ref;
 | 
						|
using testing::ResultOf;
 | 
						|
using testing::SizeIs;
 | 
						|
using testing::StartsWith;
 | 
						|
using testing::StrCaseEq;
 | 
						|
using testing::StrCaseNe;
 | 
						|
using testing::StrEq;
 | 
						|
using testing::StrNe;
 | 
						|
using testing::StringMatchResultListener;
 | 
						|
using testing::Truly;
 | 
						|
using testing::TypedEq;
 | 
						|
using testing::UnorderedPointwise;
 | 
						|
using testing::Value;
 | 
						|
using testing::WhenSorted;
 | 
						|
using testing::WhenSortedBy;
 | 
						|
using testing::_;
 | 
						|
using testing::get;
 | 
						|
using testing::internal::DummyMatchResultListener;
 | 
						|
using testing::internal::ElementMatcherPair;
 | 
						|
using testing::internal::ElementMatcherPairs;
 | 
						|
using testing::internal::ExplainMatchFailureTupleTo;
 | 
						|
using testing::internal::FloatingEqMatcher;
 | 
						|
using testing::internal::FormatMatcherDescription;
 | 
						|
using testing::internal::IsReadableTypeName;
 | 
						|
using testing::internal::linked_ptr;
 | 
						|
using testing::internal::MatchMatrix;
 | 
						|
using testing::internal::RE;
 | 
						|
using testing::internal::scoped_ptr;
 | 
						|
using testing::internal::StreamMatchResultListener;
 | 
						|
using testing::internal::Strings;
 | 
						|
using testing::internal::linked_ptr;
 | 
						|
using testing::internal::scoped_ptr;
 | 
						|
using testing::internal::string;
 | 
						|
using testing::make_tuple;
 | 
						|
using testing::tuple;
 | 
						|
 | 
						|
// For testing ExplainMatchResultTo().
 | 
						|
class GreaterThanMatcher : public MatcherInterface<int> {
 | 
						|
 public:
 | 
						|
  explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {}
 | 
						|
 | 
						|
  virtual void DescribeTo(ostream* os) const {
 | 
						|
    *os << "is > " << rhs_;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool MatchAndExplain(int lhs,
 | 
						|
                               MatchResultListener* listener) const {
 | 
						|
    const int diff = lhs - rhs_;
 | 
						|
    if (diff > 0) {
 | 
						|
      *listener << "which is " << diff << " more than " << rhs_;
 | 
						|
    } else if (diff == 0) {
 | 
						|
      *listener << "which is the same as " << rhs_;
 | 
						|
    } else {
 | 
						|
      *listener << "which is " << -diff << " less than " << rhs_;
 | 
						|
    }
 | 
						|
 | 
						|
    return lhs > rhs_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  int rhs_;
 | 
						|
};
 | 
						|
 | 
						|
Matcher<int> GreaterThan(int n) {
 | 
						|
  return MakeMatcher(new GreaterThanMatcher(n));
 | 
						|
}
 | 
						|
 | 
						|
std::string OfType(const std::string& type_name) {
 | 
						|
#if GTEST_HAS_RTTI
 | 
						|
  return " (of type " + type_name + ")";
 | 
						|
#else
 | 
						|
  return "";
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
// Returns the description of the given matcher.
 | 
						|
template <typename T>
 | 
						|
std::string Describe(const Matcher<T>& m) {
 | 
						|
  return DescribeMatcher<T>(m);
 | 
						|
}
 | 
						|
 | 
						|
// Returns the description of the negation of the given matcher.
 | 
						|
template <typename T>
 | 
						|
std::string DescribeNegation(const Matcher<T>& m) {
 | 
						|
  return DescribeMatcher<T>(m, true);
 | 
						|
}
 | 
						|
 | 
						|
// Returns the reason why x matches, or doesn't match, m.
 | 
						|
template <typename MatcherType, typename Value>
 | 
						|
std::string Explain(const MatcherType& m, const Value& x) {
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  ExplainMatchResult(m, x, &listener);
 | 
						|
  return listener.str();
 | 
						|
}
 | 
						|
 | 
						|
TEST(MonotonicMatcherTest, IsPrintable) {
 | 
						|
  stringstream ss;
 | 
						|
  ss << GreaterThan(5);
 | 
						|
  EXPECT_EQ("is > 5", ss.str());
 | 
						|
}
 | 
						|
 | 
						|
TEST(MatchResultListenerTest, StreamingWorks) {
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  listener << "hi" << 5;
 | 
						|
  EXPECT_EQ("hi5", listener.str());
 | 
						|
 | 
						|
  listener.Clear();
 | 
						|
  EXPECT_EQ("", listener.str());
 | 
						|
 | 
						|
  listener << 42;
 | 
						|
  EXPECT_EQ("42", listener.str());
 | 
						|
 | 
						|
  // Streaming shouldn't crash when the underlying ostream is NULL.
 | 
						|
  DummyMatchResultListener dummy;
 | 
						|
  dummy << "hi" << 5;
 | 
						|
}
 | 
						|
 | 
						|
TEST(MatchResultListenerTest, CanAccessUnderlyingStream) {
 | 
						|
  EXPECT_TRUE(DummyMatchResultListener().stream() == NULL);
 | 
						|
  EXPECT_TRUE(StreamMatchResultListener(NULL).stream() == NULL);
 | 
						|
 | 
						|
  EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream());
 | 
						|
}
 | 
						|
 | 
						|
TEST(MatchResultListenerTest, IsInterestedWorks) {
 | 
						|
  EXPECT_TRUE(StringMatchResultListener().IsInterested());
 | 
						|
  EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested());
 | 
						|
 | 
						|
  EXPECT_FALSE(DummyMatchResultListener().IsInterested());
 | 
						|
  EXPECT_FALSE(StreamMatchResultListener(NULL).IsInterested());
 | 
						|
}
 | 
						|
 | 
						|
// Makes sure that the MatcherInterface<T> interface doesn't
 | 
						|
// change.
 | 
						|
class EvenMatcherImpl : public MatcherInterface<int> {
 | 
						|
 public:
 | 
						|
  virtual bool MatchAndExplain(int x,
 | 
						|
                               MatchResultListener* /* listener */) const {
 | 
						|
    return x % 2 == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void DescribeTo(ostream* os) const {
 | 
						|
    *os << "is an even number";
 | 
						|
  }
 | 
						|
 | 
						|
  // We deliberately don't define DescribeNegationTo() and
 | 
						|
  // ExplainMatchResultTo() here, to make sure the definition of these
 | 
						|
  // two methods is optional.
 | 
						|
};
 | 
						|
 | 
						|
// Makes sure that the MatcherInterface API doesn't change.
 | 
						|
TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) {
 | 
						|
  EvenMatcherImpl m;
 | 
						|
}
 | 
						|
 | 
						|
// Tests implementing a monomorphic matcher using MatchAndExplain().
 | 
						|
 | 
						|
class NewEvenMatcherImpl : public MatcherInterface<int> {
 | 
						|
 public:
 | 
						|
  virtual bool MatchAndExplain(int x, MatchResultListener* listener) const {
 | 
						|
    const bool match = x % 2 == 0;
 | 
						|
    // Verifies that we can stream to a listener directly.
 | 
						|
    *listener << "value % " << 2;
 | 
						|
    if (listener->stream() != NULL) {
 | 
						|
      // Verifies that we can stream to a listener's underlying stream
 | 
						|
      // too.
 | 
						|
      *listener->stream() << " == " << (x % 2);
 | 
						|
    }
 | 
						|
    return match;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void DescribeTo(ostream* os) const {
 | 
						|
    *os << "is an even number";
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) {
 | 
						|
  Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl);
 | 
						|
  EXPECT_TRUE(m.Matches(2));
 | 
						|
  EXPECT_FALSE(m.Matches(3));
 | 
						|
  EXPECT_EQ("value % 2 == 0", Explain(m, 2));
 | 
						|
  EXPECT_EQ("value % 2 == 1", Explain(m, 3));
 | 
						|
}
 | 
						|
 | 
						|
// Tests default-constructing a matcher.
 | 
						|
TEST(MatcherTest, CanBeDefaultConstructed) {
 | 
						|
  Matcher<double> m;
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Matcher<T> can be constructed from a MatcherInterface<T>*.
 | 
						|
TEST(MatcherTest, CanBeConstructedFromMatcherInterface) {
 | 
						|
  const MatcherInterface<int>* impl = new EvenMatcherImpl;
 | 
						|
  Matcher<int> m(impl);
 | 
						|
  EXPECT_TRUE(m.Matches(4));
 | 
						|
  EXPECT_FALSE(m.Matches(5));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that value can be used in place of Eq(value).
 | 
						|
TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) {
 | 
						|
  Matcher<int> m1 = 5;
 | 
						|
  EXPECT_TRUE(m1.Matches(5));
 | 
						|
  EXPECT_FALSE(m1.Matches(6));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that NULL can be used in place of Eq(NULL).
 | 
						|
TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) {
 | 
						|
  Matcher<int*> m1 = NULL;
 | 
						|
  EXPECT_TRUE(m1.Matches(NULL));
 | 
						|
  int n = 0;
 | 
						|
  EXPECT_FALSE(m1.Matches(&n));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that matchers can be constructed from a variable that is not properly
 | 
						|
// defined. This should be illegal, but many users rely on this accidentally.
 | 
						|
struct Undefined {
 | 
						|
  virtual ~Undefined() = 0;
 | 
						|
  static const int kInt = 1;
 | 
						|
};
 | 
						|
 | 
						|
TEST(MatcherTest, CanBeConstructedFromUndefinedVariable) {
 | 
						|
  Matcher<int> m1 = Undefined::kInt;
 | 
						|
  EXPECT_TRUE(m1.Matches(1));
 | 
						|
  EXPECT_FALSE(m1.Matches(2));
 | 
						|
}
 | 
						|
 | 
						|
// Test that a matcher parameterized with an abstract class compiles.
 | 
						|
TEST(MatcherTest, CanAcceptAbstractClass) { Matcher<const Undefined&> m = _; }
 | 
						|
 | 
						|
// Tests that matchers are copyable.
 | 
						|
TEST(MatcherTest, IsCopyable) {
 | 
						|
  // Tests the copy constructor.
 | 
						|
  Matcher<bool> m1 = Eq(false);
 | 
						|
  EXPECT_TRUE(m1.Matches(false));
 | 
						|
  EXPECT_FALSE(m1.Matches(true));
 | 
						|
 | 
						|
  // Tests the assignment operator.
 | 
						|
  m1 = Eq(true);
 | 
						|
  EXPECT_TRUE(m1.Matches(true));
 | 
						|
  EXPECT_FALSE(m1.Matches(false));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Matcher<T>::DescribeTo() calls
 | 
						|
// MatcherInterface<T>::DescribeTo().
 | 
						|
TEST(MatcherTest, CanDescribeItself) {
 | 
						|
  EXPECT_EQ("is an even number",
 | 
						|
            Describe(Matcher<int>(new EvenMatcherImpl)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests Matcher<T>::MatchAndExplain().
 | 
						|
TEST(MatcherTest, MatchAndExplain) {
 | 
						|
  Matcher<int> m = GreaterThan(0);
 | 
						|
  StringMatchResultListener listener1;
 | 
						|
  EXPECT_TRUE(m.MatchAndExplain(42, &listener1));
 | 
						|
  EXPECT_EQ("which is 42 more than 0", listener1.str());
 | 
						|
 | 
						|
  StringMatchResultListener listener2;
 | 
						|
  EXPECT_FALSE(m.MatchAndExplain(-9, &listener2));
 | 
						|
  EXPECT_EQ("which is 9 less than 0", listener2.str());
 | 
						|
}
 | 
						|
 | 
						|
// Tests that a C-string literal can be implicitly converted to a
 | 
						|
// Matcher<std::string> or Matcher<const std::string&>.
 | 
						|
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
 | 
						|
  Matcher<std::string> m1 = "hi";
 | 
						|
  EXPECT_TRUE(m1.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m1.Matches("hello"));
 | 
						|
 | 
						|
  Matcher<const std::string&> m2 = "hi";
 | 
						|
  EXPECT_TRUE(m2.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m2.Matches("hello"));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that a string object can be implicitly converted to a
 | 
						|
// Matcher<std::string> or Matcher<const std::string&>.
 | 
						|
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) {
 | 
						|
  Matcher<std::string> m1 = std::string("hi");
 | 
						|
  EXPECT_TRUE(m1.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m1.Matches("hello"));
 | 
						|
 | 
						|
  Matcher<const std::string&> m2 = std::string("hi");
 | 
						|
  EXPECT_TRUE(m2.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m2.Matches("hello"));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_HAS_GLOBAL_STRING
 | 
						|
// Tests that a ::string object can be implicitly converted to a
 | 
						|
// Matcher<std::string> or Matcher<const std::string&>.
 | 
						|
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromGlobalString) {
 | 
						|
  Matcher<std::string> m1 = ::string("hi");
 | 
						|
  EXPECT_TRUE(m1.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m1.Matches("hello"));
 | 
						|
 | 
						|
  Matcher<const std::string&> m2 = ::string("hi");
 | 
						|
  EXPECT_TRUE(m2.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m2.Matches("hello"));
 | 
						|
}
 | 
						|
#endif  // GTEST_HAS_GLOBAL_STRING
 | 
						|
 | 
						|
#if GTEST_HAS_GLOBAL_STRING
 | 
						|
// Tests that a C-string literal can be implicitly converted to a
 | 
						|
// Matcher<::string> or Matcher<const ::string&>.
 | 
						|
TEST(GlobalStringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
 | 
						|
  Matcher< ::string> m1 = "hi";
 | 
						|
  EXPECT_TRUE(m1.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m1.Matches("hello"));
 | 
						|
 | 
						|
  Matcher<const ::string&> m2 = "hi";
 | 
						|
  EXPECT_TRUE(m2.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m2.Matches("hello"));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that a std::string object can be implicitly converted to a
 | 
						|
// Matcher<::string> or Matcher<const ::string&>.
 | 
						|
TEST(GlobalStringMatcherTest, CanBeImplicitlyConstructedFromString) {
 | 
						|
  Matcher< ::string> m1 = std::string("hi");
 | 
						|
  EXPECT_TRUE(m1.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m1.Matches("hello"));
 | 
						|
 | 
						|
  Matcher<const ::string&> m2 = std::string("hi");
 | 
						|
  EXPECT_TRUE(m2.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m2.Matches("hello"));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that a ::string object can be implicitly converted to a
 | 
						|
// Matcher<::string> or Matcher<const ::string&>.
 | 
						|
TEST(GlobalStringMatcherTest, CanBeImplicitlyConstructedFromGlobalString) {
 | 
						|
  Matcher< ::string> m1 = ::string("hi");
 | 
						|
  EXPECT_TRUE(m1.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m1.Matches("hello"));
 | 
						|
 | 
						|
  Matcher<const ::string&> m2 = ::string("hi");
 | 
						|
  EXPECT_TRUE(m2.Matches("hi"));
 | 
						|
  EXPECT_FALSE(m2.Matches("hello"));
 | 
						|
}
 | 
						|
#endif  // GTEST_HAS_GLOBAL_STRING
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
// Tests that a C-string literal can be implicitly converted to a
 | 
						|
// Matcher<absl::string_view> or Matcher<const absl::string_view&>.
 | 
						|
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
 | 
						|
  Matcher<absl::string_view> m1 = "cats";
 | 
						|
  EXPECT_TRUE(m1.Matches("cats"));
 | 
						|
  EXPECT_FALSE(m1.Matches("dogs"));
 | 
						|
 | 
						|
  Matcher<const absl::string_view&> m2 = "cats";
 | 
						|
  EXPECT_TRUE(m2.Matches("cats"));
 | 
						|
  EXPECT_FALSE(m2.Matches("dogs"));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that a std::string object can be implicitly converted to a
 | 
						|
// Matcher<absl::string_view> or Matcher<const absl::string_view&>.
 | 
						|
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromString) {
 | 
						|
  Matcher<absl::string_view> m1 = std::string("cats");
 | 
						|
  EXPECT_TRUE(m1.Matches("cats"));
 | 
						|
  EXPECT_FALSE(m1.Matches("dogs"));
 | 
						|
 | 
						|
  Matcher<const absl::string_view&> m2 = std::string("cats");
 | 
						|
  EXPECT_TRUE(m2.Matches("cats"));
 | 
						|
  EXPECT_FALSE(m2.Matches("dogs"));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_HAS_GLOBAL_STRING
 | 
						|
// Tests that a ::string object can be implicitly converted to a
 | 
						|
// Matcher<absl::string_view> or Matcher<const absl::string_view&>.
 | 
						|
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromGlobalString) {
 | 
						|
  Matcher<absl::string_view> m1 = ::string("cats");
 | 
						|
  EXPECT_TRUE(m1.Matches("cats"));
 | 
						|
  EXPECT_FALSE(m1.Matches("dogs"));
 | 
						|
 | 
						|
  Matcher<const absl::string_view&> m2 = ::string("cats");
 | 
						|
  EXPECT_TRUE(m2.Matches("cats"));
 | 
						|
  EXPECT_FALSE(m2.Matches("dogs"));
 | 
						|
}
 | 
						|
#endif  // GTEST_HAS_GLOBAL_STRING
 | 
						|
 | 
						|
// Tests that a absl::string_view object can be implicitly converted to a
 | 
						|
// Matcher<absl::string_view> or Matcher<const absl::string_view&>.
 | 
						|
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromStringView) {
 | 
						|
  Matcher<absl::string_view> m1 = absl::string_view("cats");
 | 
						|
  EXPECT_TRUE(m1.Matches("cats"));
 | 
						|
  EXPECT_FALSE(m1.Matches("dogs"));
 | 
						|
 | 
						|
  Matcher<const absl::string_view&> m2 = absl::string_view("cats");
 | 
						|
  EXPECT_TRUE(m2.Matches("cats"));
 | 
						|
  EXPECT_FALSE(m2.Matches("dogs"));
 | 
						|
}
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
 | 
						|
// Tests that MakeMatcher() constructs a Matcher<T> from a
 | 
						|
// MatcherInterface* without requiring the user to explicitly
 | 
						|
// write the type.
 | 
						|
TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) {
 | 
						|
  const MatcherInterface<int>* dummy_impl = NULL;
 | 
						|
  Matcher<int> m = MakeMatcher(dummy_impl);
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MakePolymorphicMatcher() can construct a polymorphic
 | 
						|
// matcher from its implementation using the old API.
 | 
						|
const int g_bar = 1;
 | 
						|
class ReferencesBarOrIsZeroImpl {
 | 
						|
 public:
 | 
						|
  template <typename T>
 | 
						|
  bool MatchAndExplain(const T& x,
 | 
						|
                       MatchResultListener* /* listener */) const {
 | 
						|
    const void* p = &x;
 | 
						|
    return p == &g_bar || x == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  void DescribeTo(ostream* os) const { *os << "g_bar or zero"; }
 | 
						|
 | 
						|
  void DescribeNegationTo(ostream* os) const {
 | 
						|
    *os << "doesn't reference g_bar and is not zero";
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// This function verifies that MakePolymorphicMatcher() returns a
 | 
						|
// PolymorphicMatcher<T> where T is the argument's type.
 | 
						|
PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() {
 | 
						|
  return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl());
 | 
						|
}
 | 
						|
 | 
						|
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) {
 | 
						|
  // Using a polymorphic matcher to match a reference type.
 | 
						|
  Matcher<const int&> m1 = ReferencesBarOrIsZero();
 | 
						|
  EXPECT_TRUE(m1.Matches(0));
 | 
						|
  // Verifies that the identity of a by-reference argument is preserved.
 | 
						|
  EXPECT_TRUE(m1.Matches(g_bar));
 | 
						|
  EXPECT_FALSE(m1.Matches(1));
 | 
						|
  EXPECT_EQ("g_bar or zero", Describe(m1));
 | 
						|
 | 
						|
  // Using a polymorphic matcher to match a value type.
 | 
						|
  Matcher<double> m2 = ReferencesBarOrIsZero();
 | 
						|
  EXPECT_TRUE(m2.Matches(0.0));
 | 
						|
  EXPECT_FALSE(m2.Matches(0.1));
 | 
						|
  EXPECT_EQ("g_bar or zero", Describe(m2));
 | 
						|
}
 | 
						|
 | 
						|
// Tests implementing a polymorphic matcher using MatchAndExplain().
 | 
						|
 | 
						|
class PolymorphicIsEvenImpl {
 | 
						|
 public:
 | 
						|
  void DescribeTo(ostream* os) const { *os << "is even"; }
 | 
						|
 | 
						|
  void DescribeNegationTo(ostream* os) const {
 | 
						|
    *os << "is odd";
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename T>
 | 
						|
  bool MatchAndExplain(const T& x, MatchResultListener* listener) const {
 | 
						|
    // Verifies that we can stream to the listener directly.
 | 
						|
    *listener << "% " << 2;
 | 
						|
    if (listener->stream() != NULL) {
 | 
						|
      // Verifies that we can stream to the listener's underlying stream
 | 
						|
      // too.
 | 
						|
      *listener->stream() << " == " << (x % 2);
 | 
						|
    }
 | 
						|
    return (x % 2) == 0;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() {
 | 
						|
  return MakePolymorphicMatcher(PolymorphicIsEvenImpl());
 | 
						|
}
 | 
						|
 | 
						|
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) {
 | 
						|
  // Using PolymorphicIsEven() as a Matcher<int>.
 | 
						|
  const Matcher<int> m1 = PolymorphicIsEven();
 | 
						|
  EXPECT_TRUE(m1.Matches(42));
 | 
						|
  EXPECT_FALSE(m1.Matches(43));
 | 
						|
  EXPECT_EQ("is even", Describe(m1));
 | 
						|
 | 
						|
  const Matcher<int> not_m1 = Not(m1);
 | 
						|
  EXPECT_EQ("is odd", Describe(not_m1));
 | 
						|
 | 
						|
  EXPECT_EQ("% 2 == 0", Explain(m1, 42));
 | 
						|
 | 
						|
  // Using PolymorphicIsEven() as a Matcher<char>.
 | 
						|
  const Matcher<char> m2 = PolymorphicIsEven();
 | 
						|
  EXPECT_TRUE(m2.Matches('\x42'));
 | 
						|
  EXPECT_FALSE(m2.Matches('\x43'));
 | 
						|
  EXPECT_EQ("is even", Describe(m2));
 | 
						|
 | 
						|
  const Matcher<char> not_m2 = Not(m2);
 | 
						|
  EXPECT_EQ("is odd", Describe(not_m2));
 | 
						|
 | 
						|
  EXPECT_EQ("% 2 == 0", Explain(m2, '\x42'));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MatcherCast<T>(m) works when m is a polymorphic matcher.
 | 
						|
TEST(MatcherCastTest, FromPolymorphicMatcher) {
 | 
						|
  Matcher<int> m = MatcherCast<int>(Eq(5));
 | 
						|
  EXPECT_TRUE(m.Matches(5));
 | 
						|
  EXPECT_FALSE(m.Matches(6));
 | 
						|
}
 | 
						|
 | 
						|
// For testing casting matchers between compatible types.
 | 
						|
class IntValue {
 | 
						|
 public:
 | 
						|
  // An int can be statically (although not implicitly) cast to a
 | 
						|
  // IntValue.
 | 
						|
  explicit IntValue(int a_value) : value_(a_value) {}
 | 
						|
 | 
						|
  int value() const { return value_; }
 | 
						|
 private:
 | 
						|
  int value_;
 | 
						|
};
 | 
						|
 | 
						|
// For testing casting matchers between compatible types.
 | 
						|
bool IsPositiveIntValue(const IntValue& foo) {
 | 
						|
  return foo.value() > 0;
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T
 | 
						|
// can be statically converted to U.
 | 
						|
TEST(MatcherCastTest, FromCompatibleType) {
 | 
						|
  Matcher<double> m1 = Eq(2.0);
 | 
						|
  Matcher<int> m2 = MatcherCast<int>(m1);
 | 
						|
  EXPECT_TRUE(m2.Matches(2));
 | 
						|
  EXPECT_FALSE(m2.Matches(3));
 | 
						|
 | 
						|
  Matcher<IntValue> m3 = Truly(IsPositiveIntValue);
 | 
						|
  Matcher<int> m4 = MatcherCast<int>(m3);
 | 
						|
  // In the following, the arguments 1 and 0 are statically converted
 | 
						|
  // to IntValue objects, and then tested by the IsPositiveIntValue()
 | 
						|
  // predicate.
 | 
						|
  EXPECT_TRUE(m4.Matches(1));
 | 
						|
  EXPECT_FALSE(m4.Matches(0));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>.
 | 
						|
TEST(MatcherCastTest, FromConstReferenceToNonReference) {
 | 
						|
  Matcher<const int&> m1 = Eq(0);
 | 
						|
  Matcher<int> m2 = MatcherCast<int>(m1);
 | 
						|
  EXPECT_TRUE(m2.Matches(0));
 | 
						|
  EXPECT_FALSE(m2.Matches(1));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MatcherCast<T>(m) works when m is a Matcher<T&>.
 | 
						|
TEST(MatcherCastTest, FromReferenceToNonReference) {
 | 
						|
  Matcher<int&> m1 = Eq(0);
 | 
						|
  Matcher<int> m2 = MatcherCast<int>(m1);
 | 
						|
  EXPECT_TRUE(m2.Matches(0));
 | 
						|
  EXPECT_FALSE(m2.Matches(1));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
 | 
						|
TEST(MatcherCastTest, FromNonReferenceToConstReference) {
 | 
						|
  Matcher<int> m1 = Eq(0);
 | 
						|
  Matcher<const int&> m2 = MatcherCast<const int&>(m1);
 | 
						|
  EXPECT_TRUE(m2.Matches(0));
 | 
						|
  EXPECT_FALSE(m2.Matches(1));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MatcherCast<T&>(m) works when m is a Matcher<T>.
 | 
						|
TEST(MatcherCastTest, FromNonReferenceToReference) {
 | 
						|
  Matcher<int> m1 = Eq(0);
 | 
						|
  Matcher<int&> m2 = MatcherCast<int&>(m1);
 | 
						|
  int n = 0;
 | 
						|
  EXPECT_TRUE(m2.Matches(n));
 | 
						|
  n = 1;
 | 
						|
  EXPECT_FALSE(m2.Matches(n));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MatcherCast<T>(m) works when m is a Matcher<T>.
 | 
						|
TEST(MatcherCastTest, FromSameType) {
 | 
						|
  Matcher<int> m1 = Eq(0);
 | 
						|
  Matcher<int> m2 = MatcherCast<int>(m1);
 | 
						|
  EXPECT_TRUE(m2.Matches(0));
 | 
						|
  EXPECT_FALSE(m2.Matches(1));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MatcherCast<T>(m) works when m is a value of the same type as the
 | 
						|
// value type of the Matcher.
 | 
						|
TEST(MatcherCastTest, FromAValue) {
 | 
						|
  Matcher<int> m = MatcherCast<int>(42);
 | 
						|
  EXPECT_TRUE(m.Matches(42));
 | 
						|
  EXPECT_FALSE(m.Matches(239));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MatcherCast<T>(m) works when m is a value of the type implicitly
 | 
						|
// convertible to the value type of the Matcher.
 | 
						|
TEST(MatcherCastTest, FromAnImplicitlyConvertibleValue) {
 | 
						|
  const int kExpected = 'c';
 | 
						|
  Matcher<int> m = MatcherCast<int>('c');
 | 
						|
  EXPECT_TRUE(m.Matches(kExpected));
 | 
						|
  EXPECT_FALSE(m.Matches(kExpected + 1));
 | 
						|
}
 | 
						|
 | 
						|
struct NonImplicitlyConstructibleTypeWithOperatorEq {
 | 
						|
  friend bool operator==(
 | 
						|
      const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */,
 | 
						|
      int rhs) {
 | 
						|
    return 42 == rhs;
 | 
						|
  }
 | 
						|
  friend bool operator==(
 | 
						|
      int lhs,
 | 
						|
      const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */) {
 | 
						|
    return lhs == 42;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Tests that MatcherCast<T>(m) works when m is a neither a matcher nor
 | 
						|
// implicitly convertible to the value type of the Matcher, but the value type
 | 
						|
// of the matcher has operator==() overload accepting m.
 | 
						|
TEST(MatcherCastTest, NonImplicitlyConstructibleTypeWithOperatorEq) {
 | 
						|
  Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m1 =
 | 
						|
      MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(42);
 | 
						|
  EXPECT_TRUE(m1.Matches(NonImplicitlyConstructibleTypeWithOperatorEq()));
 | 
						|
 | 
						|
  Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m2 =
 | 
						|
      MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(239);
 | 
						|
  EXPECT_FALSE(m2.Matches(NonImplicitlyConstructibleTypeWithOperatorEq()));
 | 
						|
 | 
						|
  // When updating the following lines please also change the comment to
 | 
						|
  // namespace convertible_from_any.
 | 
						|
  Matcher<int> m3 =
 | 
						|
      MatcherCast<int>(NonImplicitlyConstructibleTypeWithOperatorEq());
 | 
						|
  EXPECT_TRUE(m3.Matches(42));
 | 
						|
  EXPECT_FALSE(m3.Matches(239));
 | 
						|
}
 | 
						|
 | 
						|
// The below ConvertibleFromAny struct is implicitly constructible from anything
 | 
						|
// and when in the same namespace can interact with other tests. In particular,
 | 
						|
// if it is in the same namespace as other tests and one removes
 | 
						|
//   NonImplicitlyConstructibleTypeWithOperatorEq::operator==(int lhs, ...);
 | 
						|
// then the corresponding test still compiles (and it should not!) by implicitly
 | 
						|
// converting NonImplicitlyConstructibleTypeWithOperatorEq to ConvertibleFromAny
 | 
						|
// in m3.Matcher().
 | 
						|
namespace convertible_from_any {
 | 
						|
// Implicitly convertible from any type.
 | 
						|
struct ConvertibleFromAny {
 | 
						|
  ConvertibleFromAny(int a_value) : value(a_value) {}
 | 
						|
  template <typename T>
 | 
						|
  explicit ConvertibleFromAny(const T& /*a_value*/) : value(-1) {
 | 
						|
    ADD_FAILURE() << "Conversion constructor called";
 | 
						|
  }
 | 
						|
  int value;
 | 
						|
};
 | 
						|
 | 
						|
bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) {
 | 
						|
  return a.value == b.value;
 | 
						|
}
 | 
						|
 | 
						|
ostream& operator<<(ostream& os, const ConvertibleFromAny& a) {
 | 
						|
  return os << a.value;
 | 
						|
}
 | 
						|
 | 
						|
TEST(MatcherCastTest, ConversionConstructorIsUsed) {
 | 
						|
  Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1);
 | 
						|
  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
 | 
						|
  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(MatcherCastTest, FromConvertibleFromAny) {
 | 
						|
  Matcher<ConvertibleFromAny> m =
 | 
						|
      MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
 | 
						|
  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
 | 
						|
  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
 | 
						|
}
 | 
						|
}  // namespace convertible_from_any
 | 
						|
 | 
						|
struct IntReferenceWrapper {
 | 
						|
  IntReferenceWrapper(const int& a_value) : value(&a_value) {}
 | 
						|
  const int* value;
 | 
						|
};
 | 
						|
 | 
						|
bool operator==(const IntReferenceWrapper& a, const IntReferenceWrapper& b) {
 | 
						|
  return a.value == b.value;
 | 
						|
}
 | 
						|
 | 
						|
TEST(MatcherCastTest, ValueIsNotCopied) {
 | 
						|
  int n = 42;
 | 
						|
  Matcher<IntReferenceWrapper> m = MatcherCast<IntReferenceWrapper>(n);
 | 
						|
  // Verify that the matcher holds a reference to n, not to its temporary copy.
 | 
						|
  EXPECT_TRUE(m.Matches(n));
 | 
						|
}
 | 
						|
 | 
						|
class Base {
 | 
						|
 public:
 | 
						|
  virtual ~Base() {}
 | 
						|
  Base() {}
 | 
						|
 private:
 | 
						|
  GTEST_DISALLOW_COPY_AND_ASSIGN_(Base);
 | 
						|
};
 | 
						|
 | 
						|
class Derived : public Base {
 | 
						|
 public:
 | 
						|
  Derived() : Base() {}
 | 
						|
  int i;
 | 
						|
};
 | 
						|
 | 
						|
class OtherDerived : public Base {};
 | 
						|
 | 
						|
// Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher.
 | 
						|
TEST(SafeMatcherCastTest, FromPolymorphicMatcher) {
 | 
						|
  Matcher<char> m2 = SafeMatcherCast<char>(Eq(32));
 | 
						|
  EXPECT_TRUE(m2.Matches(' '));
 | 
						|
  EXPECT_FALSE(m2.Matches('\n'));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where
 | 
						|
// T and U are arithmetic types and T can be losslessly converted to
 | 
						|
// U.
 | 
						|
TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) {
 | 
						|
  Matcher<double> m1 = DoubleEq(1.0);
 | 
						|
  Matcher<float> m2 = SafeMatcherCast<float>(m1);
 | 
						|
  EXPECT_TRUE(m2.Matches(1.0f));
 | 
						|
  EXPECT_FALSE(m2.Matches(2.0f));
 | 
						|
 | 
						|
  Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a'));
 | 
						|
  EXPECT_TRUE(m3.Matches('a'));
 | 
						|
  EXPECT_FALSE(m3.Matches('b'));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U
 | 
						|
// are pointers or references to a derived and a base class, correspondingly.
 | 
						|
TEST(SafeMatcherCastTest, FromBaseClass) {
 | 
						|
  Derived d, d2;
 | 
						|
  Matcher<Base*> m1 = Eq(&d);
 | 
						|
  Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1);
 | 
						|
  EXPECT_TRUE(m2.Matches(&d));
 | 
						|
  EXPECT_FALSE(m2.Matches(&d2));
 | 
						|
 | 
						|
  Matcher<Base&> m3 = Ref(d);
 | 
						|
  Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3);
 | 
						|
  EXPECT_TRUE(m4.Matches(d));
 | 
						|
  EXPECT_FALSE(m4.Matches(d2));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>.
 | 
						|
TEST(SafeMatcherCastTest, FromConstReferenceToReference) {
 | 
						|
  int n = 0;
 | 
						|
  Matcher<const int&> m1 = Ref(n);
 | 
						|
  Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
 | 
						|
  int n1 = 0;
 | 
						|
  EXPECT_TRUE(m2.Matches(n));
 | 
						|
  EXPECT_FALSE(m2.Matches(n1));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
 | 
						|
TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) {
 | 
						|
  Matcher<int> m1 = Eq(0);
 | 
						|
  Matcher<const int&> m2 = SafeMatcherCast<const int&>(m1);
 | 
						|
  EXPECT_TRUE(m2.Matches(0));
 | 
						|
  EXPECT_FALSE(m2.Matches(1));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>.
 | 
						|
TEST(SafeMatcherCastTest, FromNonReferenceToReference) {
 | 
						|
  Matcher<int> m1 = Eq(0);
 | 
						|
  Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
 | 
						|
  int n = 0;
 | 
						|
  EXPECT_TRUE(m2.Matches(n));
 | 
						|
  n = 1;
 | 
						|
  EXPECT_FALSE(m2.Matches(n));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>.
 | 
						|
TEST(SafeMatcherCastTest, FromSameType) {
 | 
						|
  Matcher<int> m1 = Eq(0);
 | 
						|
  Matcher<int> m2 = SafeMatcherCast<int>(m1);
 | 
						|
  EXPECT_TRUE(m2.Matches(0));
 | 
						|
  EXPECT_FALSE(m2.Matches(1));
 | 
						|
}
 | 
						|
 | 
						|
namespace convertible_from_any {
 | 
						|
TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) {
 | 
						|
  Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1);
 | 
						|
  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
 | 
						|
  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(SafeMatcherCastTest, FromConvertibleFromAny) {
 | 
						|
  Matcher<ConvertibleFromAny> m =
 | 
						|
      SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
 | 
						|
  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
 | 
						|
  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
 | 
						|
}
 | 
						|
}  // namespace convertible_from_any
 | 
						|
 | 
						|
TEST(SafeMatcherCastTest, ValueIsNotCopied) {
 | 
						|
  int n = 42;
 | 
						|
  Matcher<IntReferenceWrapper> m = SafeMatcherCast<IntReferenceWrapper>(n);
 | 
						|
  // Verify that the matcher holds a reference to n, not to its temporary copy.
 | 
						|
  EXPECT_TRUE(m.Matches(n));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ExpectThat, TakesLiterals) {
 | 
						|
  EXPECT_THAT(1, 1);
 | 
						|
  EXPECT_THAT(1.0, 1.0);
 | 
						|
  EXPECT_THAT(std::string(), "");
 | 
						|
}
 | 
						|
 | 
						|
TEST(ExpectThat, TakesFunctions) {
 | 
						|
  struct Helper {
 | 
						|
    static void Func() {}
 | 
						|
  };
 | 
						|
  void (*func)() = Helper::Func;
 | 
						|
  EXPECT_THAT(func, Helper::Func);
 | 
						|
  EXPECT_THAT(func, &Helper::Func);
 | 
						|
}
 | 
						|
 | 
						|
// Tests that A<T>() matches any value of type T.
 | 
						|
TEST(ATest, MatchesAnyValue) {
 | 
						|
  // Tests a matcher for a value type.
 | 
						|
  Matcher<double> m1 = A<double>();
 | 
						|
  EXPECT_TRUE(m1.Matches(91.43));
 | 
						|
  EXPECT_TRUE(m1.Matches(-15.32));
 | 
						|
 | 
						|
  // Tests a matcher for a reference type.
 | 
						|
  int a = 2;
 | 
						|
  int b = -6;
 | 
						|
  Matcher<int&> m2 = A<int&>();
 | 
						|
  EXPECT_TRUE(m2.Matches(a));
 | 
						|
  EXPECT_TRUE(m2.Matches(b));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ATest, WorksForDerivedClass) {
 | 
						|
  Base base;
 | 
						|
  Derived derived;
 | 
						|
  EXPECT_THAT(&base, A<Base*>());
 | 
						|
  // This shouldn't compile: EXPECT_THAT(&base, A<Derived*>());
 | 
						|
  EXPECT_THAT(&derived, A<Base*>());
 | 
						|
  EXPECT_THAT(&derived, A<Derived*>());
 | 
						|
}
 | 
						|
 | 
						|
// Tests that A<T>() describes itself properly.
 | 
						|
TEST(ATest, CanDescribeSelf) {
 | 
						|
  EXPECT_EQ("is anything", Describe(A<bool>()));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that An<T>() matches any value of type T.
 | 
						|
TEST(AnTest, MatchesAnyValue) {
 | 
						|
  // Tests a matcher for a value type.
 | 
						|
  Matcher<int> m1 = An<int>();
 | 
						|
  EXPECT_TRUE(m1.Matches(9143));
 | 
						|
  EXPECT_TRUE(m1.Matches(-1532));
 | 
						|
 | 
						|
  // Tests a matcher for a reference type.
 | 
						|
  int a = 2;
 | 
						|
  int b = -6;
 | 
						|
  Matcher<int&> m2 = An<int&>();
 | 
						|
  EXPECT_TRUE(m2.Matches(a));
 | 
						|
  EXPECT_TRUE(m2.Matches(b));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that An<T>() describes itself properly.
 | 
						|
TEST(AnTest, CanDescribeSelf) {
 | 
						|
  EXPECT_EQ("is anything", Describe(An<int>()));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that _ can be used as a matcher for any type and matches any
 | 
						|
// value of that type.
 | 
						|
TEST(UnderscoreTest, MatchesAnyValue) {
 | 
						|
  // Uses _ as a matcher for a value type.
 | 
						|
  Matcher<int> m1 = _;
 | 
						|
  EXPECT_TRUE(m1.Matches(123));
 | 
						|
  EXPECT_TRUE(m1.Matches(-242));
 | 
						|
 | 
						|
  // Uses _ as a matcher for a reference type.
 | 
						|
  bool a = false;
 | 
						|
  const bool b = true;
 | 
						|
  Matcher<const bool&> m2 = _;
 | 
						|
  EXPECT_TRUE(m2.Matches(a));
 | 
						|
  EXPECT_TRUE(m2.Matches(b));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that _ describes itself properly.
 | 
						|
TEST(UnderscoreTest, CanDescribeSelf) {
 | 
						|
  Matcher<int> m = _;
 | 
						|
  EXPECT_EQ("is anything", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Eq(x) matches any value equal to x.
 | 
						|
TEST(EqTest, MatchesEqualValue) {
 | 
						|
  // 2 C-strings with same content but different addresses.
 | 
						|
  const char a1[] = "hi";
 | 
						|
  const char a2[] = "hi";
 | 
						|
 | 
						|
  Matcher<const char*> m1 = Eq(a1);
 | 
						|
  EXPECT_TRUE(m1.Matches(a1));
 | 
						|
  EXPECT_FALSE(m1.Matches(a2));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Eq(v) describes itself properly.
 | 
						|
 | 
						|
class Unprintable {
 | 
						|
 public:
 | 
						|
  Unprintable() : c_('a') {}
 | 
						|
 | 
						|
  bool operator==(const Unprintable& /* rhs */) const { return true; }
 | 
						|
 private:
 | 
						|
  char c_;
 | 
						|
};
 | 
						|
 | 
						|
TEST(EqTest, CanDescribeSelf) {
 | 
						|
  Matcher<Unprintable> m = Eq(Unprintable());
 | 
						|
  EXPECT_EQ("is equal to 1-byte object <61>", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Eq(v) can be used to match any type that supports
 | 
						|
// comparing with type T, where T is v's type.
 | 
						|
TEST(EqTest, IsPolymorphic) {
 | 
						|
  Matcher<int> m1 = Eq(1);
 | 
						|
  EXPECT_TRUE(m1.Matches(1));
 | 
						|
  EXPECT_FALSE(m1.Matches(2));
 | 
						|
 | 
						|
  Matcher<char> m2 = Eq(1);
 | 
						|
  EXPECT_TRUE(m2.Matches('\1'));
 | 
						|
  EXPECT_FALSE(m2.Matches('a'));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that TypedEq<T>(v) matches values of type T that's equal to v.
 | 
						|
TEST(TypedEqTest, ChecksEqualityForGivenType) {
 | 
						|
  Matcher<char> m1 = TypedEq<char>('a');
 | 
						|
  EXPECT_TRUE(m1.Matches('a'));
 | 
						|
  EXPECT_FALSE(m1.Matches('b'));
 | 
						|
 | 
						|
  Matcher<int> m2 = TypedEq<int>(6);
 | 
						|
  EXPECT_TRUE(m2.Matches(6));
 | 
						|
  EXPECT_FALSE(m2.Matches(7));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that TypedEq(v) describes itself properly.
 | 
						|
TEST(TypedEqTest, CanDescribeSelf) {
 | 
						|
  EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that TypedEq<T>(v) has type Matcher<T>.
 | 
						|
 | 
						|
// Type<T>::IsTypeOf(v) compiles iff the type of value v is T, where T
 | 
						|
// is a "bare" type (i.e. not in the form of const U or U&).  If v's
 | 
						|
// type is not T, the compiler will generate a message about
 | 
						|
// "undefined reference".
 | 
						|
template <typename T>
 | 
						|
struct Type {
 | 
						|
  static bool IsTypeOf(const T& /* v */) { return true; }
 | 
						|
 | 
						|
  template <typename T2>
 | 
						|
  static void IsTypeOf(T2 v);
 | 
						|
};
 | 
						|
 | 
						|
TEST(TypedEqTest, HasSpecifiedType) {
 | 
						|
  // Verfies that the type of TypedEq<T>(v) is Matcher<T>.
 | 
						|
  Type<Matcher<int> >::IsTypeOf(TypedEq<int>(5));
 | 
						|
  Type<Matcher<double> >::IsTypeOf(TypedEq<double>(5));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ge(v) matches anything >= v.
 | 
						|
TEST(GeTest, ImplementsGreaterThanOrEqual) {
 | 
						|
  Matcher<int> m1 = Ge(0);
 | 
						|
  EXPECT_TRUE(m1.Matches(1));
 | 
						|
  EXPECT_TRUE(m1.Matches(0));
 | 
						|
  EXPECT_FALSE(m1.Matches(-1));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ge(v) describes itself properly.
 | 
						|
TEST(GeTest, CanDescribeSelf) {
 | 
						|
  Matcher<int> m = Ge(5);
 | 
						|
  EXPECT_EQ("is >= 5", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Gt(v) matches anything > v.
 | 
						|
TEST(GtTest, ImplementsGreaterThan) {
 | 
						|
  Matcher<double> m1 = Gt(0);
 | 
						|
  EXPECT_TRUE(m1.Matches(1.0));
 | 
						|
  EXPECT_FALSE(m1.Matches(0.0));
 | 
						|
  EXPECT_FALSE(m1.Matches(-1.0));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Gt(v) describes itself properly.
 | 
						|
TEST(GtTest, CanDescribeSelf) {
 | 
						|
  Matcher<int> m = Gt(5);
 | 
						|
  EXPECT_EQ("is > 5", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Le(v) matches anything <= v.
 | 
						|
TEST(LeTest, ImplementsLessThanOrEqual) {
 | 
						|
  Matcher<char> m1 = Le('b');
 | 
						|
  EXPECT_TRUE(m1.Matches('a'));
 | 
						|
  EXPECT_TRUE(m1.Matches('b'));
 | 
						|
  EXPECT_FALSE(m1.Matches('c'));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Le(v) describes itself properly.
 | 
						|
TEST(LeTest, CanDescribeSelf) {
 | 
						|
  Matcher<int> m = Le(5);
 | 
						|
  EXPECT_EQ("is <= 5", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Lt(v) matches anything < v.
 | 
						|
TEST(LtTest, ImplementsLessThan) {
 | 
						|
  Matcher<const std::string&> m1 = Lt("Hello");
 | 
						|
  EXPECT_TRUE(m1.Matches("Abc"));
 | 
						|
  EXPECT_FALSE(m1.Matches("Hello"));
 | 
						|
  EXPECT_FALSE(m1.Matches("Hello, world!"));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Lt(v) describes itself properly.
 | 
						|
TEST(LtTest, CanDescribeSelf) {
 | 
						|
  Matcher<int> m = Lt(5);
 | 
						|
  EXPECT_EQ("is < 5", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ne(v) matches anything != v.
 | 
						|
TEST(NeTest, ImplementsNotEqual) {
 | 
						|
  Matcher<int> m1 = Ne(0);
 | 
						|
  EXPECT_TRUE(m1.Matches(1));
 | 
						|
  EXPECT_TRUE(m1.Matches(-1));
 | 
						|
  EXPECT_FALSE(m1.Matches(0));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ne(v) describes itself properly.
 | 
						|
TEST(NeTest, CanDescribeSelf) {
 | 
						|
  Matcher<int> m = Ne(5);
 | 
						|
  EXPECT_EQ("isn't equal to 5", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that IsNull() matches any NULL pointer of any type.
 | 
						|
TEST(IsNullTest, MatchesNullPointer) {
 | 
						|
  Matcher<int*> m1 = IsNull();
 | 
						|
  int* p1 = NULL;
 | 
						|
  int n = 0;
 | 
						|
  EXPECT_TRUE(m1.Matches(p1));
 | 
						|
  EXPECT_FALSE(m1.Matches(&n));
 | 
						|
 | 
						|
  Matcher<const char*> m2 = IsNull();
 | 
						|
  const char* p2 = NULL;
 | 
						|
  EXPECT_TRUE(m2.Matches(p2));
 | 
						|
  EXPECT_FALSE(m2.Matches("hi"));
 | 
						|
 | 
						|
#if !GTEST_OS_SYMBIAN
 | 
						|
  // Nokia's Symbian compiler generates:
 | 
						|
  // gmock-matchers.h: ambiguous access to overloaded function
 | 
						|
  // gmock-matchers.h: 'testing::Matcher<void *>::Matcher(void *)'
 | 
						|
  // gmock-matchers.h: 'testing::Matcher<void *>::Matcher(const testing::
 | 
						|
  //     MatcherInterface<void *> *)'
 | 
						|
  // gmock-matchers.h:  (point of instantiation: 'testing::
 | 
						|
  //     gmock_matchers_test::IsNullTest_MatchesNullPointer_Test::TestBody()')
 | 
						|
  // gmock-matchers.h:   (instantiating: 'testing::PolymorphicMatc
 | 
						|
  Matcher<void*> m3 = IsNull();
 | 
						|
  void* p3 = NULL;
 | 
						|
  EXPECT_TRUE(m3.Matches(p3));
 | 
						|
  EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef)));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsNullTest, LinkedPtr) {
 | 
						|
  const Matcher<linked_ptr<int> > m = IsNull();
 | 
						|
  const linked_ptr<int> null_p;
 | 
						|
  const linked_ptr<int> non_null_p(new int);
 | 
						|
 | 
						|
  EXPECT_TRUE(m.Matches(null_p));
 | 
						|
  EXPECT_FALSE(m.Matches(non_null_p));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsNullTest, ReferenceToConstLinkedPtr) {
 | 
						|
  const Matcher<const linked_ptr<double>&> m = IsNull();
 | 
						|
  const linked_ptr<double> null_p;
 | 
						|
  const linked_ptr<double> non_null_p(new double);
 | 
						|
 | 
						|
  EXPECT_TRUE(m.Matches(null_p));
 | 
						|
  EXPECT_FALSE(m.Matches(non_null_p));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
TEST(IsNullTest, StdFunction) {
 | 
						|
  const Matcher<std::function<void()>> m = IsNull();
 | 
						|
 | 
						|
  EXPECT_TRUE(m.Matches(std::function<void()>()));
 | 
						|
  EXPECT_FALSE(m.Matches([]{}));
 | 
						|
}
 | 
						|
#endif  // GTEST_LANG_CXX11
 | 
						|
 | 
						|
// Tests that IsNull() describes itself properly.
 | 
						|
TEST(IsNullTest, CanDescribeSelf) {
 | 
						|
  Matcher<int*> m = IsNull();
 | 
						|
  EXPECT_EQ("is NULL", Describe(m));
 | 
						|
  EXPECT_EQ("isn't NULL", DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that NotNull() matches any non-NULL pointer of any type.
 | 
						|
TEST(NotNullTest, MatchesNonNullPointer) {
 | 
						|
  Matcher<int*> m1 = NotNull();
 | 
						|
  int* p1 = NULL;
 | 
						|
  int n = 0;
 | 
						|
  EXPECT_FALSE(m1.Matches(p1));
 | 
						|
  EXPECT_TRUE(m1.Matches(&n));
 | 
						|
 | 
						|
  Matcher<const char*> m2 = NotNull();
 | 
						|
  const char* p2 = NULL;
 | 
						|
  EXPECT_FALSE(m2.Matches(p2));
 | 
						|
  EXPECT_TRUE(m2.Matches("hi"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(NotNullTest, LinkedPtr) {
 | 
						|
  const Matcher<linked_ptr<int> > m = NotNull();
 | 
						|
  const linked_ptr<int> null_p;
 | 
						|
  const linked_ptr<int> non_null_p(new int);
 | 
						|
 | 
						|
  EXPECT_FALSE(m.Matches(null_p));
 | 
						|
  EXPECT_TRUE(m.Matches(non_null_p));
 | 
						|
}
 | 
						|
 | 
						|
TEST(NotNullTest, ReferenceToConstLinkedPtr) {
 | 
						|
  const Matcher<const linked_ptr<double>&> m = NotNull();
 | 
						|
  const linked_ptr<double> null_p;
 | 
						|
  const linked_ptr<double> non_null_p(new double);
 | 
						|
 | 
						|
  EXPECT_FALSE(m.Matches(null_p));
 | 
						|
  EXPECT_TRUE(m.Matches(non_null_p));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
TEST(NotNullTest, StdFunction) {
 | 
						|
  const Matcher<std::function<void()>> m = NotNull();
 | 
						|
 | 
						|
  EXPECT_TRUE(m.Matches([]{}));
 | 
						|
  EXPECT_FALSE(m.Matches(std::function<void()>()));
 | 
						|
}
 | 
						|
#endif  // GTEST_LANG_CXX11
 | 
						|
 | 
						|
// Tests that NotNull() describes itself properly.
 | 
						|
TEST(NotNullTest, CanDescribeSelf) {
 | 
						|
  Matcher<int*> m = NotNull();
 | 
						|
  EXPECT_EQ("isn't NULL", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ref(variable) matches an argument that references
 | 
						|
// 'variable'.
 | 
						|
TEST(RefTest, MatchesSameVariable) {
 | 
						|
  int a = 0;
 | 
						|
  int b = 0;
 | 
						|
  Matcher<int&> m = Ref(a);
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  EXPECT_FALSE(m.Matches(b));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ref(variable) describes itself properly.
 | 
						|
TEST(RefTest, CanDescribeSelf) {
 | 
						|
  int n = 5;
 | 
						|
  Matcher<int&> m = Ref(n);
 | 
						|
  stringstream ss;
 | 
						|
  ss << "references the variable @" << &n << " 5";
 | 
						|
  EXPECT_EQ(ss.str(), Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Test that Ref(non_const_varialbe) can be used as a matcher for a
 | 
						|
// const reference.
 | 
						|
TEST(RefTest, CanBeUsedAsMatcherForConstReference) {
 | 
						|
  int a = 0;
 | 
						|
  int b = 0;
 | 
						|
  Matcher<const int&> m = Ref(a);
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  EXPECT_FALSE(m.Matches(b));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ref(variable) is covariant, i.e. Ref(derived) can be
 | 
						|
// used wherever Ref(base) can be used (Ref(derived) is a sub-type
 | 
						|
// of Ref(base), but not vice versa.
 | 
						|
 | 
						|
TEST(RefTest, IsCovariant) {
 | 
						|
  Base base, base2;
 | 
						|
  Derived derived;
 | 
						|
  Matcher<const Base&> m1 = Ref(base);
 | 
						|
  EXPECT_TRUE(m1.Matches(base));
 | 
						|
  EXPECT_FALSE(m1.Matches(base2));
 | 
						|
  EXPECT_FALSE(m1.Matches(derived));
 | 
						|
 | 
						|
  m1 = Ref(derived);
 | 
						|
  EXPECT_TRUE(m1.Matches(derived));
 | 
						|
  EXPECT_FALSE(m1.Matches(base));
 | 
						|
  EXPECT_FALSE(m1.Matches(base2));
 | 
						|
}
 | 
						|
 | 
						|
TEST(RefTest, ExplainsResult) {
 | 
						|
  int n = 0;
 | 
						|
  EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n),
 | 
						|
              StartsWith("which is located @"));
 | 
						|
 | 
						|
  int m = 0;
 | 
						|
  EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m),
 | 
						|
              StartsWith("which is located @"));
 | 
						|
}
 | 
						|
 | 
						|
// Tests string comparison matchers.
 | 
						|
 | 
						|
TEST(StrEqTest, MatchesEqualString) {
 | 
						|
  Matcher<const char*> m = StrEq(std::string("Hello"));
 | 
						|
  EXPECT_TRUE(m.Matches("Hello"));
 | 
						|
  EXPECT_FALSE(m.Matches("hello"));
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
 | 
						|
  Matcher<const std::string&> m2 = StrEq("Hello");
 | 
						|
  EXPECT_TRUE(m2.Matches("Hello"));
 | 
						|
  EXPECT_FALSE(m2.Matches("Hi"));
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
  Matcher<const absl::string_view&> m3 = StrEq("Hello");
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view("Hello")));
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view("hello")));
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view()));
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
}
 | 
						|
 | 
						|
TEST(StrEqTest, CanDescribeSelf) {
 | 
						|
  Matcher<std::string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3");
 | 
						|
  EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"",
 | 
						|
      Describe(m));
 | 
						|
 | 
						|
  std::string str("01204500800");
 | 
						|
  str[3] = '\0';
 | 
						|
  Matcher<std::string> m2 = StrEq(str);
 | 
						|
  EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2));
 | 
						|
  str[0] = str[6] = str[7] = str[9] = str[10] = '\0';
 | 
						|
  Matcher<std::string> m3 = StrEq(str);
 | 
						|
  EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StrNeTest, MatchesUnequalString) {
 | 
						|
  Matcher<const char*> m = StrNe("Hello");
 | 
						|
  EXPECT_TRUE(m.Matches(""));
 | 
						|
  EXPECT_TRUE(m.Matches(NULL));
 | 
						|
  EXPECT_FALSE(m.Matches("Hello"));
 | 
						|
 | 
						|
  Matcher<std::string> m2 = StrNe(std::string("Hello"));
 | 
						|
  EXPECT_TRUE(m2.Matches("hello"));
 | 
						|
  EXPECT_FALSE(m2.Matches("Hello"));
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
  Matcher<const absl::string_view> m3 = StrNe("Hello");
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view("")));
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view()));
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view("Hello")));
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
}
 | 
						|
 | 
						|
TEST(StrNeTest, CanDescribeSelf) {
 | 
						|
  Matcher<const char*> m = StrNe("Hi");
 | 
						|
  EXPECT_EQ("isn't equal to \"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) {
 | 
						|
  Matcher<const char*> m = StrCaseEq(std::string("Hello"));
 | 
						|
  EXPECT_TRUE(m.Matches("Hello"));
 | 
						|
  EXPECT_TRUE(m.Matches("hello"));
 | 
						|
  EXPECT_FALSE(m.Matches("Hi"));
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
 | 
						|
  Matcher<const std::string&> m2 = StrCaseEq("Hello");
 | 
						|
  EXPECT_TRUE(m2.Matches("hello"));
 | 
						|
  EXPECT_FALSE(m2.Matches("Hi"));
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
  Matcher<const absl::string_view&> m3 = StrCaseEq(std::string("Hello"));
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view("Hello")));
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view("hello")));
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view("Hi")));
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view()));
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
}
 | 
						|
 | 
						|
TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
 | 
						|
  std::string str1("oabocdooeoo");
 | 
						|
  std::string str2("OABOCDOOEOO");
 | 
						|
  Matcher<const std::string&> m0 = StrCaseEq(str1);
 | 
						|
  EXPECT_FALSE(m0.Matches(str2 + std::string(1, '\0')));
 | 
						|
 | 
						|
  str1[3] = str2[3] = '\0';
 | 
						|
  Matcher<const std::string&> m1 = StrCaseEq(str1);
 | 
						|
  EXPECT_TRUE(m1.Matches(str2));
 | 
						|
 | 
						|
  str1[0] = str1[6] = str1[7] = str1[10] = '\0';
 | 
						|
  str2[0] = str2[6] = str2[7] = str2[10] = '\0';
 | 
						|
  Matcher<const std::string&> m2 = StrCaseEq(str1);
 | 
						|
  str1[9] = str2[9] = '\0';
 | 
						|
  EXPECT_FALSE(m2.Matches(str2));
 | 
						|
 | 
						|
  Matcher<const std::string&> m3 = StrCaseEq(str1);
 | 
						|
  EXPECT_TRUE(m3.Matches(str2));
 | 
						|
 | 
						|
  EXPECT_FALSE(m3.Matches(str2 + "x"));
 | 
						|
  str2.append(1, '\0');
 | 
						|
  EXPECT_FALSE(m3.Matches(str2));
 | 
						|
  EXPECT_FALSE(m3.Matches(std::string(str2, 0, 9)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StrCaseEqTest, CanDescribeSelf) {
 | 
						|
  Matcher<std::string> m = StrCaseEq("Hi");
 | 
						|
  EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) {
 | 
						|
  Matcher<const char*> m = StrCaseNe("Hello");
 | 
						|
  EXPECT_TRUE(m.Matches("Hi"));
 | 
						|
  EXPECT_TRUE(m.Matches(NULL));
 | 
						|
  EXPECT_FALSE(m.Matches("Hello"));
 | 
						|
  EXPECT_FALSE(m.Matches("hello"));
 | 
						|
 | 
						|
  Matcher<std::string> m2 = StrCaseNe(std::string("Hello"));
 | 
						|
  EXPECT_TRUE(m2.Matches(""));
 | 
						|
  EXPECT_FALSE(m2.Matches("Hello"));
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
  Matcher<const absl::string_view> m3 = StrCaseNe("Hello");
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view("Hi")));
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view()));
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view("Hello")));
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view("hello")));
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
}
 | 
						|
 | 
						|
TEST(StrCaseNeTest, CanDescribeSelf) {
 | 
						|
  Matcher<const char*> m = StrCaseNe("Hi");
 | 
						|
  EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that HasSubstr() works for matching string-typed values.
 | 
						|
TEST(HasSubstrTest, WorksForStringClasses) {
 | 
						|
  const Matcher<std::string> m1 = HasSubstr("foo");
 | 
						|
  EXPECT_TRUE(m1.Matches(std::string("I love food.")));
 | 
						|
  EXPECT_FALSE(m1.Matches(std::string("tofo")));
 | 
						|
 | 
						|
  const Matcher<const std::string&> m2 = HasSubstr("foo");
 | 
						|
  EXPECT_TRUE(m2.Matches(std::string("I love food.")));
 | 
						|
  EXPECT_FALSE(m2.Matches(std::string("tofo")));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that HasSubstr() works for matching C-string-typed values.
 | 
						|
TEST(HasSubstrTest, WorksForCStrings) {
 | 
						|
  const Matcher<char*> m1 = HasSubstr("foo");
 | 
						|
  EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food.")));
 | 
						|
  EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo")));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const char*> m2 = HasSubstr("foo");
 | 
						|
  EXPECT_TRUE(m2.Matches("I love food."));
 | 
						|
  EXPECT_FALSE(m2.Matches("tofo"));
 | 
						|
  EXPECT_FALSE(m2.Matches(NULL));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
// Tests that HasSubstr() works for matching absl::string_view-typed values.
 | 
						|
TEST(HasSubstrTest, WorksForStringViewClasses) {
 | 
						|
  const Matcher<absl::string_view> m1 = HasSubstr("foo");
 | 
						|
  EXPECT_TRUE(m1.Matches(absl::string_view("I love food.")));
 | 
						|
  EXPECT_FALSE(m1.Matches(absl::string_view("tofo")));
 | 
						|
  EXPECT_FALSE(m1.Matches(absl::string_view()));
 | 
						|
 | 
						|
  const Matcher<const absl::string_view&> m2 = HasSubstr("foo");
 | 
						|
  EXPECT_TRUE(m2.Matches(absl::string_view("I love food.")));
 | 
						|
  EXPECT_FALSE(m2.Matches(absl::string_view("tofo")));
 | 
						|
  EXPECT_FALSE(m2.Matches(absl::string_view()));
 | 
						|
 | 
						|
  const Matcher<const absl::string_view&> m3 = HasSubstr("");
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view("foo")));
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view()));
 | 
						|
}
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
 | 
						|
// Tests that HasSubstr(s) describes itself properly.
 | 
						|
TEST(HasSubstrTest, CanDescribeSelf) {
 | 
						|
  Matcher<std::string> m = HasSubstr("foo\n\"");
 | 
						|
  EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(KeyTest, CanDescribeSelf) {
 | 
						|
  Matcher<const pair<std::string, int>&> m = Key("foo");
 | 
						|
  EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m));
 | 
						|
  EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(KeyTest, ExplainsResult) {
 | 
						|
  Matcher<pair<int, bool> > m = Key(GreaterThan(10));
 | 
						|
  EXPECT_EQ("whose first field is a value which is 5 less than 10",
 | 
						|
            Explain(m, make_pair(5, true)));
 | 
						|
  EXPECT_EQ("whose first field is a value which is 5 more than 10",
 | 
						|
            Explain(m, make_pair(15, true)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(KeyTest, MatchesCorrectly) {
 | 
						|
  pair<int, std::string> p(25, "foo");
 | 
						|
  EXPECT_THAT(p, Key(25));
 | 
						|
  EXPECT_THAT(p, Not(Key(42)));
 | 
						|
  EXPECT_THAT(p, Key(Ge(20)));
 | 
						|
  EXPECT_THAT(p, Not(Key(Lt(25))));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
template <size_t I>
 | 
						|
struct Tag {};
 | 
						|
 | 
						|
struct PairWithGet {
 | 
						|
  int member_1;
 | 
						|
  string member_2;
 | 
						|
  using first_type = int;
 | 
						|
  using second_type = string;
 | 
						|
 | 
						|
  const int& GetImpl(Tag<0>) const { return member_1; }
 | 
						|
  const string& GetImpl(Tag<1>) const { return member_2; }
 | 
						|
};
 | 
						|
template <size_t I>
 | 
						|
auto get(const PairWithGet& value) -> decltype(value.GetImpl(Tag<I>())) {
 | 
						|
  return value.GetImpl(Tag<I>());
 | 
						|
}
 | 
						|
TEST(PairTest, MatchesPairWithGetCorrectly) {
 | 
						|
  PairWithGet p{25, "foo"};
 | 
						|
  EXPECT_THAT(p, Key(25));
 | 
						|
  EXPECT_THAT(p, Not(Key(42)));
 | 
						|
  EXPECT_THAT(p, Key(Ge(20)));
 | 
						|
  EXPECT_THAT(p, Not(Key(Lt(25))));
 | 
						|
 | 
						|
  std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}};
 | 
						|
  EXPECT_THAT(v, Contains(Key(29)));
 | 
						|
}
 | 
						|
#endif  // GTEST_LANG_CXX11
 | 
						|
 | 
						|
TEST(KeyTest, SafelyCastsInnerMatcher) {
 | 
						|
  Matcher<int> is_positive = Gt(0);
 | 
						|
  Matcher<int> is_negative = Lt(0);
 | 
						|
  pair<char, bool> p('a', true);
 | 
						|
  EXPECT_THAT(p, Key(is_positive));
 | 
						|
  EXPECT_THAT(p, Not(Key(is_negative)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(KeyTest, InsideContainsUsingMap) {
 | 
						|
  map<int, char> container;
 | 
						|
  container.insert(make_pair(1, 'a'));
 | 
						|
  container.insert(make_pair(2, 'b'));
 | 
						|
  container.insert(make_pair(4, 'c'));
 | 
						|
  EXPECT_THAT(container, Contains(Key(1)));
 | 
						|
  EXPECT_THAT(container, Not(Contains(Key(3))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(KeyTest, InsideContainsUsingMultimap) {
 | 
						|
  multimap<int, char> container;
 | 
						|
  container.insert(make_pair(1, 'a'));
 | 
						|
  container.insert(make_pair(2, 'b'));
 | 
						|
  container.insert(make_pair(4, 'c'));
 | 
						|
 | 
						|
  EXPECT_THAT(container, Not(Contains(Key(25))));
 | 
						|
  container.insert(make_pair(25, 'd'));
 | 
						|
  EXPECT_THAT(container, Contains(Key(25)));
 | 
						|
  container.insert(make_pair(25, 'e'));
 | 
						|
  EXPECT_THAT(container, Contains(Key(25)));
 | 
						|
 | 
						|
  EXPECT_THAT(container, Contains(Key(1)));
 | 
						|
  EXPECT_THAT(container, Not(Contains(Key(3))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PairTest, Typing) {
 | 
						|
  // Test verifies the following type conversions can be compiled.
 | 
						|
  Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42);
 | 
						|
  Matcher<const pair<const char*, int> > m2 = Pair("foo", 42);
 | 
						|
  Matcher<pair<const char*, int> > m3 = Pair("foo", 42);
 | 
						|
 | 
						|
  Matcher<pair<int, const std::string> > m4 = Pair(25, "42");
 | 
						|
  Matcher<pair<const std::string, int> > m5 = Pair("25", 42);
 | 
						|
}
 | 
						|
 | 
						|
TEST(PairTest, CanDescribeSelf) {
 | 
						|
  Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42);
 | 
						|
  EXPECT_EQ("has a first field that is equal to \"foo\""
 | 
						|
            ", and has a second field that is equal to 42",
 | 
						|
            Describe(m1));
 | 
						|
  EXPECT_EQ("has a first field that isn't equal to \"foo\""
 | 
						|
            ", or has a second field that isn't equal to 42",
 | 
						|
            DescribeNegation(m1));
 | 
						|
  // Double and triple negation (1 or 2 times not and description of negation).
 | 
						|
  Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42));
 | 
						|
  EXPECT_EQ("has a first field that isn't equal to 13"
 | 
						|
            ", and has a second field that is equal to 42",
 | 
						|
            DescribeNegation(m2));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PairTest, CanExplainMatchResultTo) {
 | 
						|
  // If neither field matches, Pair() should explain about the first
 | 
						|
  // field.
 | 
						|
  const Matcher<pair<int, int> > m = Pair(GreaterThan(0), GreaterThan(0));
 | 
						|
  EXPECT_EQ("whose first field does not match, which is 1 less than 0",
 | 
						|
            Explain(m, make_pair(-1, -2)));
 | 
						|
 | 
						|
  // If the first field matches but the second doesn't, Pair() should
 | 
						|
  // explain about the second field.
 | 
						|
  EXPECT_EQ("whose second field does not match, which is 2 less than 0",
 | 
						|
            Explain(m, make_pair(1, -2)));
 | 
						|
 | 
						|
  // If the first field doesn't match but the second does, Pair()
 | 
						|
  // should explain about the first field.
 | 
						|
  EXPECT_EQ("whose first field does not match, which is 1 less than 0",
 | 
						|
            Explain(m, make_pair(-1, 2)));
 | 
						|
 | 
						|
  // If both fields match, Pair() should explain about them both.
 | 
						|
  EXPECT_EQ("whose both fields match, where the first field is a value "
 | 
						|
            "which is 1 more than 0, and the second field is a value "
 | 
						|
            "which is 2 more than 0",
 | 
						|
            Explain(m, make_pair(1, 2)));
 | 
						|
 | 
						|
  // If only the first match has an explanation, only this explanation should
 | 
						|
  // be printed.
 | 
						|
  const Matcher<pair<int, int> > explain_first = Pair(GreaterThan(0), 0);
 | 
						|
  EXPECT_EQ("whose both fields match, where the first field is a value "
 | 
						|
            "which is 1 more than 0",
 | 
						|
            Explain(explain_first, make_pair(1, 0)));
 | 
						|
 | 
						|
  // If only the second match has an explanation, only this explanation should
 | 
						|
  // be printed.
 | 
						|
  const Matcher<pair<int, int> > explain_second = Pair(0, GreaterThan(0));
 | 
						|
  EXPECT_EQ("whose both fields match, where the second field is a value "
 | 
						|
            "which is 1 more than 0",
 | 
						|
            Explain(explain_second, make_pair(0, 1)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PairTest, MatchesCorrectly) {
 | 
						|
  pair<int, std::string> p(25, "foo");
 | 
						|
 | 
						|
  // Both fields match.
 | 
						|
  EXPECT_THAT(p, Pair(25, "foo"));
 | 
						|
  EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o")));
 | 
						|
 | 
						|
  // 'first' doesnt' match, but 'second' matches.
 | 
						|
  EXPECT_THAT(p, Not(Pair(42, "foo")));
 | 
						|
  EXPECT_THAT(p, Not(Pair(Lt(25), "foo")));
 | 
						|
 | 
						|
  // 'first' matches, but 'second' doesn't match.
 | 
						|
  EXPECT_THAT(p, Not(Pair(25, "bar")));
 | 
						|
  EXPECT_THAT(p, Not(Pair(25, Not("foo"))));
 | 
						|
 | 
						|
  // Neither field matches.
 | 
						|
  EXPECT_THAT(p, Not(Pair(13, "bar")));
 | 
						|
  EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a"))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PairTest, SafelyCastsInnerMatchers) {
 | 
						|
  Matcher<int> is_positive = Gt(0);
 | 
						|
  Matcher<int> is_negative = Lt(0);
 | 
						|
  pair<char, bool> p('a', true);
 | 
						|
  EXPECT_THAT(p, Pair(is_positive, _));
 | 
						|
  EXPECT_THAT(p, Not(Pair(is_negative, _)));
 | 
						|
  EXPECT_THAT(p, Pair(_, is_positive));
 | 
						|
  EXPECT_THAT(p, Not(Pair(_, is_negative)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PairTest, InsideContainsUsingMap) {
 | 
						|
  map<int, char> container;
 | 
						|
  container.insert(make_pair(1, 'a'));
 | 
						|
  container.insert(make_pair(2, 'b'));
 | 
						|
  container.insert(make_pair(4, 'c'));
 | 
						|
  EXPECT_THAT(container, Contains(Pair(1, 'a')));
 | 
						|
  EXPECT_THAT(container, Contains(Pair(1, _)));
 | 
						|
  EXPECT_THAT(container, Contains(Pair(_, 'a')));
 | 
						|
  EXPECT_THAT(container, Not(Contains(Pair(3, _))));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
TEST(PairTest, UseGetInsteadOfMembers) {
 | 
						|
  PairWithGet pair{7, "ABC"};
 | 
						|
  EXPECT_THAT(pair, Pair(7, "ABC"));
 | 
						|
  EXPECT_THAT(pair, Pair(Ge(7), HasSubstr("AB")));
 | 
						|
  EXPECT_THAT(pair, Not(Pair(Lt(7), "ABC")));
 | 
						|
 | 
						|
  std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}};
 | 
						|
  EXPECT_THAT(v, ElementsAre(Pair(11, string("Foo")), Pair(Ge(10), Not(""))));
 | 
						|
}
 | 
						|
#endif  // GTEST_LANG_CXX11
 | 
						|
 | 
						|
// Tests StartsWith(s).
 | 
						|
 | 
						|
TEST(StartsWithTest, MatchesStringWithGivenPrefix) {
 | 
						|
  const Matcher<const char*> m1 = StartsWith(std::string(""));
 | 
						|
  EXPECT_TRUE(m1.Matches("Hi"));
 | 
						|
  EXPECT_TRUE(m1.Matches(""));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const std::string&> m2 = StartsWith("Hi");
 | 
						|
  EXPECT_TRUE(m2.Matches("Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches("Hi Hi!"));
 | 
						|
  EXPECT_TRUE(m2.Matches("High"));
 | 
						|
  EXPECT_FALSE(m2.Matches("H"));
 | 
						|
  EXPECT_FALSE(m2.Matches(" Hi"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StartsWithTest, CanDescribeSelf) {
 | 
						|
  Matcher<const std::string> m = StartsWith("Hi");
 | 
						|
  EXPECT_EQ("starts with \"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests EndsWith(s).
 | 
						|
 | 
						|
TEST(EndsWithTest, MatchesStringWithGivenSuffix) {
 | 
						|
  const Matcher<const char*> m1 = EndsWith("");
 | 
						|
  EXPECT_TRUE(m1.Matches("Hi"));
 | 
						|
  EXPECT_TRUE(m1.Matches(""));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const std::string&> m2 = EndsWith(std::string("Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches("Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches("Wow Hi Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches("Super Hi"));
 | 
						|
  EXPECT_FALSE(m2.Matches("i"));
 | 
						|
  EXPECT_FALSE(m2.Matches("Hi "));
 | 
						|
 | 
						|
#if GTEST_HAS_GLOBAL_STRING
 | 
						|
  const Matcher<const ::string&> m3 = EndsWith(::string("Hi"));
 | 
						|
  EXPECT_TRUE(m3.Matches("Hi"));
 | 
						|
  EXPECT_TRUE(m3.Matches("Wow Hi Hi"));
 | 
						|
  EXPECT_TRUE(m3.Matches("Super Hi"));
 | 
						|
  EXPECT_FALSE(m3.Matches("i"));
 | 
						|
  EXPECT_FALSE(m3.Matches("Hi "));
 | 
						|
#endif  // GTEST_HAS_GLOBAL_STRING
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
  const Matcher<const absl::string_view&> m4 = EndsWith("");
 | 
						|
  EXPECT_TRUE(m4.Matches("Hi"));
 | 
						|
  EXPECT_TRUE(m4.Matches(""));
 | 
						|
  // Default-constructed absl::string_view should not match anything, in order
 | 
						|
  // to distinguish it from an empty string.
 | 
						|
  EXPECT_FALSE(m4.Matches(absl::string_view()));
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
}
 | 
						|
 | 
						|
TEST(EndsWithTest, CanDescribeSelf) {
 | 
						|
  Matcher<const std::string> m = EndsWith("Hi");
 | 
						|
  EXPECT_EQ("ends with \"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests MatchesRegex().
 | 
						|
 | 
						|
TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) {
 | 
						|
  const Matcher<const char*> m1 = MatchesRegex("a.*z");
 | 
						|
  EXPECT_TRUE(m1.Matches("az"));
 | 
						|
  EXPECT_TRUE(m1.Matches("abcz"));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const std::string&> m2 = MatchesRegex(new RE("a.*z"));
 | 
						|
  EXPECT_TRUE(m2.Matches("azbz"));
 | 
						|
  EXPECT_FALSE(m2.Matches("az1"));
 | 
						|
  EXPECT_FALSE(m2.Matches("1az"));
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
  const Matcher<const absl::string_view&> m3 = MatchesRegex("a.*z");
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view("az")));
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view("abcz")));
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view("1az")));
 | 
						|
  // Default-constructed absl::string_view should not match anything, in order
 | 
						|
  // to distinguish it from an empty string.
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view()));
 | 
						|
  const Matcher<const absl::string_view&> m4 = MatchesRegex("");
 | 
						|
  EXPECT_FALSE(m4.Matches(absl::string_view()));
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
}
 | 
						|
 | 
						|
TEST(MatchesRegexTest, CanDescribeSelf) {
 | 
						|
  Matcher<const std::string> m1 = MatchesRegex(std::string("Hi.*"));
 | 
						|
  EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1));
 | 
						|
 | 
						|
  Matcher<const char*> m2 = MatchesRegex(new RE("a.*"));
 | 
						|
  EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2));
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
  Matcher<const absl::string_view> m3 = MatchesRegex(new RE("0.*"));
 | 
						|
  EXPECT_EQ("matches regular expression \"0.*\"", Describe(m3));
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
}
 | 
						|
 | 
						|
// Tests ContainsRegex().
 | 
						|
 | 
						|
TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) {
 | 
						|
  const Matcher<const char*> m1 = ContainsRegex(std::string("a.*z"));
 | 
						|
  EXPECT_TRUE(m1.Matches("az"));
 | 
						|
  EXPECT_TRUE(m1.Matches("0abcz1"));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const std::string&> m2 = ContainsRegex(new RE("a.*z"));
 | 
						|
  EXPECT_TRUE(m2.Matches("azbz"));
 | 
						|
  EXPECT_TRUE(m2.Matches("az1"));
 | 
						|
  EXPECT_FALSE(m2.Matches("1a"));
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
  const Matcher<const absl::string_view&> m3 = ContainsRegex(new RE("a.*z"));
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view("azbz")));
 | 
						|
  EXPECT_TRUE(m3.Matches(absl::string_view("az1")));
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view("1a")));
 | 
						|
  // Default-constructed absl::string_view should not match anything, in order
 | 
						|
  // to distinguish it from an empty string.
 | 
						|
  EXPECT_FALSE(m3.Matches(absl::string_view()));
 | 
						|
  const Matcher<const absl::string_view&> m4 = ContainsRegex("");
 | 
						|
  EXPECT_FALSE(m4.Matches(absl::string_view()));
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
}
 | 
						|
 | 
						|
TEST(ContainsRegexTest, CanDescribeSelf) {
 | 
						|
  Matcher<const std::string> m1 = ContainsRegex("Hi.*");
 | 
						|
  EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1));
 | 
						|
 | 
						|
  Matcher<const char*> m2 = ContainsRegex(new RE("a.*"));
 | 
						|
  EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2));
 | 
						|
 | 
						|
#if GTEST_HAS_ABSL
 | 
						|
  Matcher<const absl::string_view> m3 = ContainsRegex(new RE("0.*"));
 | 
						|
  EXPECT_EQ("contains regular expression \"0.*\"", Describe(m3));
 | 
						|
#endif  // GTEST_HAS_ABSL
 | 
						|
}
 | 
						|
 | 
						|
// Tests for wide strings.
 | 
						|
#if GTEST_HAS_STD_WSTRING
 | 
						|
TEST(StdWideStrEqTest, MatchesEqual) {
 | 
						|
  Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello"));
 | 
						|
  EXPECT_TRUE(m.Matches(L"Hello"));
 | 
						|
  EXPECT_FALSE(m.Matches(L"hello"));
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
 | 
						|
  Matcher<const ::std::wstring&> m2 = StrEq(L"Hello");
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Hello"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"Hi"));
 | 
						|
 | 
						|
  Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
 | 
						|
  EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
 | 
						|
  EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
 | 
						|
 | 
						|
  ::std::wstring str(L"01204500800");
 | 
						|
  str[3] = L'\0';
 | 
						|
  Matcher<const ::std::wstring&> m4 = StrEq(str);
 | 
						|
  EXPECT_TRUE(m4.Matches(str));
 | 
						|
  str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
 | 
						|
  Matcher<const ::std::wstring&> m5 = StrEq(str);
 | 
						|
  EXPECT_TRUE(m5.Matches(str));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StdWideStrEqTest, CanDescribeSelf) {
 | 
						|
  Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
 | 
						|
  EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
 | 
						|
    Describe(m));
 | 
						|
 | 
						|
  Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
 | 
						|
  EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"",
 | 
						|
    Describe(m2));
 | 
						|
 | 
						|
  ::std::wstring str(L"01204500800");
 | 
						|
  str[3] = L'\0';
 | 
						|
  Matcher<const ::std::wstring&> m4 = StrEq(str);
 | 
						|
  EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
 | 
						|
  str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
 | 
						|
  Matcher<const ::std::wstring&> m5 = StrEq(str);
 | 
						|
  EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StdWideStrNeTest, MatchesUnequalString) {
 | 
						|
  Matcher<const wchar_t*> m = StrNe(L"Hello");
 | 
						|
  EXPECT_TRUE(m.Matches(L""));
 | 
						|
  EXPECT_TRUE(m.Matches(NULL));
 | 
						|
  EXPECT_FALSE(m.Matches(L"Hello"));
 | 
						|
 | 
						|
  Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"hello"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"Hello"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StdWideStrNeTest, CanDescribeSelf) {
 | 
						|
  Matcher<const wchar_t*> m = StrNe(L"Hi");
 | 
						|
  EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
 | 
						|
  Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello"));
 | 
						|
  EXPECT_TRUE(m.Matches(L"Hello"));
 | 
						|
  EXPECT_TRUE(m.Matches(L"hello"));
 | 
						|
  EXPECT_FALSE(m.Matches(L"Hi"));
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
 | 
						|
  Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello");
 | 
						|
  EXPECT_TRUE(m2.Matches(L"hello"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"Hi"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
 | 
						|
  ::std::wstring str1(L"oabocdooeoo");
 | 
						|
  ::std::wstring str2(L"OABOCDOOEOO");
 | 
						|
  Matcher<const ::std::wstring&> m0 = StrCaseEq(str1);
 | 
						|
  EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0')));
 | 
						|
 | 
						|
  str1[3] = str2[3] = L'\0';
 | 
						|
  Matcher<const ::std::wstring&> m1 = StrCaseEq(str1);
 | 
						|
  EXPECT_TRUE(m1.Matches(str2));
 | 
						|
 | 
						|
  str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
 | 
						|
  str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
 | 
						|
  Matcher<const ::std::wstring&> m2 = StrCaseEq(str1);
 | 
						|
  str1[9] = str2[9] = L'\0';
 | 
						|
  EXPECT_FALSE(m2.Matches(str2));
 | 
						|
 | 
						|
  Matcher<const ::std::wstring&> m3 = StrCaseEq(str1);
 | 
						|
  EXPECT_TRUE(m3.Matches(str2));
 | 
						|
 | 
						|
  EXPECT_FALSE(m3.Matches(str2 + L"x"));
 | 
						|
  str2.append(1, L'\0');
 | 
						|
  EXPECT_FALSE(m3.Matches(str2));
 | 
						|
  EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StdWideStrCaseEqTest, CanDescribeSelf) {
 | 
						|
  Matcher< ::std::wstring> m = StrCaseEq(L"Hi");
 | 
						|
  EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
 | 
						|
  Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
 | 
						|
  EXPECT_TRUE(m.Matches(L"Hi"));
 | 
						|
  EXPECT_TRUE(m.Matches(NULL));
 | 
						|
  EXPECT_FALSE(m.Matches(L"Hello"));
 | 
						|
  EXPECT_FALSE(m.Matches(L"hello"));
 | 
						|
 | 
						|
  Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L""));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"Hello"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StdWideStrCaseNeTest, CanDescribeSelf) {
 | 
						|
  Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
 | 
						|
  EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that HasSubstr() works for matching wstring-typed values.
 | 
						|
TEST(StdWideHasSubstrTest, WorksForStringClasses) {
 | 
						|
  const Matcher< ::std::wstring> m1 = HasSubstr(L"foo");
 | 
						|
  EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food.")));
 | 
						|
  EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo")));
 | 
						|
 | 
						|
  const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo");
 | 
						|
  EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food.")));
 | 
						|
  EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo")));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that HasSubstr() works for matching C-wide-string-typed values.
 | 
						|
TEST(StdWideHasSubstrTest, WorksForCStrings) {
 | 
						|
  const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
 | 
						|
  EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
 | 
						|
  EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
 | 
						|
  EXPECT_TRUE(m2.Matches(L"I love food."));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"tofo"));
 | 
						|
  EXPECT_FALSE(m2.Matches(NULL));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that HasSubstr(s) describes itself properly.
 | 
						|
TEST(StdWideHasSubstrTest, CanDescribeSelf) {
 | 
						|
  Matcher< ::std::wstring> m = HasSubstr(L"foo\n\"");
 | 
						|
  EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests StartsWith(s).
 | 
						|
 | 
						|
TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) {
 | 
						|
  const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L""));
 | 
						|
  EXPECT_TRUE(m1.Matches(L"Hi"));
 | 
						|
  EXPECT_TRUE(m1.Matches(L""));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi");
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"High"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"H"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L" Hi"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StdWideStartsWithTest, CanDescribeSelf) {
 | 
						|
  Matcher<const ::std::wstring> m = StartsWith(L"Hi");
 | 
						|
  EXPECT_EQ("starts with L\"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests EndsWith(s).
 | 
						|
 | 
						|
TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) {
 | 
						|
  const Matcher<const wchar_t*> m1 = EndsWith(L"");
 | 
						|
  EXPECT_TRUE(m1.Matches(L"Hi"));
 | 
						|
  EXPECT_TRUE(m1.Matches(L""));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Super Hi"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"i"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"Hi "));
 | 
						|
}
 | 
						|
 | 
						|
TEST(StdWideEndsWithTest, CanDescribeSelf) {
 | 
						|
  Matcher<const ::std::wstring> m = EndsWith(L"Hi");
 | 
						|
  EXPECT_EQ("ends with L\"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // GTEST_HAS_STD_WSTRING
 | 
						|
 | 
						|
#if GTEST_HAS_GLOBAL_WSTRING
 | 
						|
TEST(GlobalWideStrEqTest, MatchesEqual) {
 | 
						|
  Matcher<const wchar_t*> m = StrEq(::wstring(L"Hello"));
 | 
						|
  EXPECT_TRUE(m.Matches(L"Hello"));
 | 
						|
  EXPECT_FALSE(m.Matches(L"hello"));
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
 | 
						|
  Matcher<const ::wstring&> m2 = StrEq(L"Hello");
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Hello"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"Hi"));
 | 
						|
 | 
						|
  Matcher<const ::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
 | 
						|
  EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
 | 
						|
  EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
 | 
						|
 | 
						|
  ::wstring str(L"01204500800");
 | 
						|
  str[3] = L'\0';
 | 
						|
  Matcher<const ::wstring&> m4 = StrEq(str);
 | 
						|
  EXPECT_TRUE(m4.Matches(str));
 | 
						|
  str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
 | 
						|
  Matcher<const ::wstring&> m5 = StrEq(str);
 | 
						|
  EXPECT_TRUE(m5.Matches(str));
 | 
						|
}
 | 
						|
 | 
						|
TEST(GlobalWideStrEqTest, CanDescribeSelf) {
 | 
						|
  Matcher< ::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
 | 
						|
  EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
 | 
						|
    Describe(m));
 | 
						|
 | 
						|
  Matcher< ::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
 | 
						|
  EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"",
 | 
						|
    Describe(m2));
 | 
						|
 | 
						|
  ::wstring str(L"01204500800");
 | 
						|
  str[3] = L'\0';
 | 
						|
  Matcher<const ::wstring&> m4 = StrEq(str);
 | 
						|
  EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
 | 
						|
  str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
 | 
						|
  Matcher<const ::wstring&> m5 = StrEq(str);
 | 
						|
  EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
 | 
						|
}
 | 
						|
 | 
						|
TEST(GlobalWideStrNeTest, MatchesUnequalString) {
 | 
						|
  Matcher<const wchar_t*> m = StrNe(L"Hello");
 | 
						|
  EXPECT_TRUE(m.Matches(L""));
 | 
						|
  EXPECT_TRUE(m.Matches(NULL));
 | 
						|
  EXPECT_FALSE(m.Matches(L"Hello"));
 | 
						|
 | 
						|
  Matcher< ::wstring> m2 = StrNe(::wstring(L"Hello"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"hello"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"Hello"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(GlobalWideStrNeTest, CanDescribeSelf) {
 | 
						|
  Matcher<const wchar_t*> m = StrNe(L"Hi");
 | 
						|
  EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(GlobalWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
 | 
						|
  Matcher<const wchar_t*> m = StrCaseEq(::wstring(L"Hello"));
 | 
						|
  EXPECT_TRUE(m.Matches(L"Hello"));
 | 
						|
  EXPECT_TRUE(m.Matches(L"hello"));
 | 
						|
  EXPECT_FALSE(m.Matches(L"Hi"));
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
 | 
						|
  Matcher<const ::wstring&> m2 = StrCaseEq(L"Hello");
 | 
						|
  EXPECT_TRUE(m2.Matches(L"hello"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"Hi"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(GlobalWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
 | 
						|
  ::wstring str1(L"oabocdooeoo");
 | 
						|
  ::wstring str2(L"OABOCDOOEOO");
 | 
						|
  Matcher<const ::wstring&> m0 = StrCaseEq(str1);
 | 
						|
  EXPECT_FALSE(m0.Matches(str2 + ::wstring(1, L'\0')));
 | 
						|
 | 
						|
  str1[3] = str2[3] = L'\0';
 | 
						|
  Matcher<const ::wstring&> m1 = StrCaseEq(str1);
 | 
						|
  EXPECT_TRUE(m1.Matches(str2));
 | 
						|
 | 
						|
  str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
 | 
						|
  str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
 | 
						|
  Matcher<const ::wstring&> m2 = StrCaseEq(str1);
 | 
						|
  str1[9] = str2[9] = L'\0';
 | 
						|
  EXPECT_FALSE(m2.Matches(str2));
 | 
						|
 | 
						|
  Matcher<const ::wstring&> m3 = StrCaseEq(str1);
 | 
						|
  EXPECT_TRUE(m3.Matches(str2));
 | 
						|
 | 
						|
  EXPECT_FALSE(m3.Matches(str2 + L"x"));
 | 
						|
  str2.append(1, L'\0');
 | 
						|
  EXPECT_FALSE(m3.Matches(str2));
 | 
						|
  EXPECT_FALSE(m3.Matches(::wstring(str2, 0, 9)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(GlobalWideStrCaseEqTest, CanDescribeSelf) {
 | 
						|
  Matcher< ::wstring> m = StrCaseEq(L"Hi");
 | 
						|
  EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(GlobalWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
 | 
						|
  Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
 | 
						|
  EXPECT_TRUE(m.Matches(L"Hi"));
 | 
						|
  EXPECT_TRUE(m.Matches(NULL));
 | 
						|
  EXPECT_FALSE(m.Matches(L"Hello"));
 | 
						|
  EXPECT_FALSE(m.Matches(L"hello"));
 | 
						|
 | 
						|
  Matcher< ::wstring> m2 = StrCaseNe(::wstring(L"Hello"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L""));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"Hello"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(GlobalWideStrCaseNeTest, CanDescribeSelf) {
 | 
						|
  Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
 | 
						|
  EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that HasSubstr() works for matching wstring-typed values.
 | 
						|
TEST(GlobalWideHasSubstrTest, WorksForStringClasses) {
 | 
						|
  const Matcher< ::wstring> m1 = HasSubstr(L"foo");
 | 
						|
  EXPECT_TRUE(m1.Matches(::wstring(L"I love food.")));
 | 
						|
  EXPECT_FALSE(m1.Matches(::wstring(L"tofo")));
 | 
						|
 | 
						|
  const Matcher<const ::wstring&> m2 = HasSubstr(L"foo");
 | 
						|
  EXPECT_TRUE(m2.Matches(::wstring(L"I love food.")));
 | 
						|
  EXPECT_FALSE(m2.Matches(::wstring(L"tofo")));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that HasSubstr() works for matching C-wide-string-typed values.
 | 
						|
TEST(GlobalWideHasSubstrTest, WorksForCStrings) {
 | 
						|
  const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
 | 
						|
  EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
 | 
						|
  EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
 | 
						|
  EXPECT_TRUE(m2.Matches(L"I love food."));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"tofo"));
 | 
						|
  EXPECT_FALSE(m2.Matches(NULL));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that HasSubstr(s) describes itself properly.
 | 
						|
TEST(GlobalWideHasSubstrTest, CanDescribeSelf) {
 | 
						|
  Matcher< ::wstring> m = HasSubstr(L"foo\n\"");
 | 
						|
  EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests StartsWith(s).
 | 
						|
 | 
						|
TEST(GlobalWideStartsWithTest, MatchesStringWithGivenPrefix) {
 | 
						|
  const Matcher<const wchar_t*> m1 = StartsWith(::wstring(L""));
 | 
						|
  EXPECT_TRUE(m1.Matches(L"Hi"));
 | 
						|
  EXPECT_TRUE(m1.Matches(L""));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const ::wstring&> m2 = StartsWith(L"Hi");
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"High"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"H"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L" Hi"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(GlobalWideStartsWithTest, CanDescribeSelf) {
 | 
						|
  Matcher<const ::wstring> m = StartsWith(L"Hi");
 | 
						|
  EXPECT_EQ("starts with L\"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests EndsWith(s).
 | 
						|
 | 
						|
TEST(GlobalWideEndsWithTest, MatchesStringWithGivenSuffix) {
 | 
						|
  const Matcher<const wchar_t*> m1 = EndsWith(L"");
 | 
						|
  EXPECT_TRUE(m1.Matches(L"Hi"));
 | 
						|
  EXPECT_TRUE(m1.Matches(L""));
 | 
						|
  EXPECT_FALSE(m1.Matches(NULL));
 | 
						|
 | 
						|
  const Matcher<const ::wstring&> m2 = EndsWith(::wstring(L"Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
 | 
						|
  EXPECT_TRUE(m2.Matches(L"Super Hi"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"i"));
 | 
						|
  EXPECT_FALSE(m2.Matches(L"Hi "));
 | 
						|
}
 | 
						|
 | 
						|
TEST(GlobalWideEndsWithTest, CanDescribeSelf) {
 | 
						|
  Matcher<const ::wstring> m = EndsWith(L"Hi");
 | 
						|
  EXPECT_EQ("ends with L\"Hi\"", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // GTEST_HAS_GLOBAL_WSTRING
 | 
						|
 | 
						|
 | 
						|
typedef ::testing::tuple<long, int> Tuple2;  // NOLINT
 | 
						|
 | 
						|
// Tests that Eq() matches a 2-tuple where the first field == the
 | 
						|
// second field.
 | 
						|
TEST(Eq2Test, MatchesEqualArguments) {
 | 
						|
  Matcher<const Tuple2&> m = Eq();
 | 
						|
  EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Eq() describes itself properly.
 | 
						|
TEST(Eq2Test, CanDescribeSelf) {
 | 
						|
  Matcher<const Tuple2&> m = Eq();
 | 
						|
  EXPECT_EQ("are an equal pair", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ge() matches a 2-tuple where the first field >= the
 | 
						|
// second field.
 | 
						|
TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) {
 | 
						|
  Matcher<const Tuple2&> m = Ge();
 | 
						|
  EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ge() describes itself properly.
 | 
						|
TEST(Ge2Test, CanDescribeSelf) {
 | 
						|
  Matcher<const Tuple2&> m = Ge();
 | 
						|
  EXPECT_EQ("are a pair where the first >= the second", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Gt() matches a 2-tuple where the first field > the
 | 
						|
// second field.
 | 
						|
TEST(Gt2Test, MatchesGreaterThanArguments) {
 | 
						|
  Matcher<const Tuple2&> m = Gt();
 | 
						|
  EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Gt() describes itself properly.
 | 
						|
TEST(Gt2Test, CanDescribeSelf) {
 | 
						|
  Matcher<const Tuple2&> m = Gt();
 | 
						|
  EXPECT_EQ("are a pair where the first > the second", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Le() matches a 2-tuple where the first field <= the
 | 
						|
// second field.
 | 
						|
TEST(Le2Test, MatchesLessThanOrEqualArguments) {
 | 
						|
  Matcher<const Tuple2&> m = Le();
 | 
						|
  EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tuple2(5L, 4)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Le() describes itself properly.
 | 
						|
TEST(Le2Test, CanDescribeSelf) {
 | 
						|
  Matcher<const Tuple2&> m = Le();
 | 
						|
  EXPECT_EQ("are a pair where the first <= the second", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Lt() matches a 2-tuple where the first field < the
 | 
						|
// second field.
 | 
						|
TEST(Lt2Test, MatchesLessThanArguments) {
 | 
						|
  Matcher<const Tuple2&> m = Lt();
 | 
						|
  EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tuple2(5L, 4)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Lt() describes itself properly.
 | 
						|
TEST(Lt2Test, CanDescribeSelf) {
 | 
						|
  Matcher<const Tuple2&> m = Lt();
 | 
						|
  EXPECT_EQ("are a pair where the first < the second", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ne() matches a 2-tuple where the first field != the
 | 
						|
// second field.
 | 
						|
TEST(Ne2Test, MatchesUnequalArguments) {
 | 
						|
  Matcher<const Tuple2&> m = Ne();
 | 
						|
  EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Ne() describes itself properly.
 | 
						|
TEST(Ne2Test, CanDescribeSelf) {
 | 
						|
  Matcher<const Tuple2&> m = Ne();
 | 
						|
  EXPECT_EQ("are an unequal pair", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that FloatEq() matches a 2-tuple where
 | 
						|
// FloatEq(first field) matches the second field.
 | 
						|
TEST(FloatEq2Test, MatchesEqualArguments) {
 | 
						|
  typedef ::testing::tuple<float, float> Tpl;
 | 
						|
  Matcher<const Tpl&> m = FloatEq();
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(0.3f, 0.1f + 0.1f + 0.1f)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that FloatEq() describes itself properly.
 | 
						|
TEST(FloatEq2Test, CanDescribeSelf) {
 | 
						|
  Matcher<const ::testing::tuple<float, float>&> m = FloatEq();
 | 
						|
  EXPECT_EQ("are an almost-equal pair", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that NanSensitiveFloatEq() matches a 2-tuple where
 | 
						|
// NanSensitiveFloatEq(first field) matches the second field.
 | 
						|
TEST(NanSensitiveFloatEqTest, MatchesEqualArgumentsWithNaN) {
 | 
						|
  typedef ::testing::tuple<float, float> Tpl;
 | 
						|
  Matcher<const Tpl&> m = NanSensitiveFloatEq();
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(),
 | 
						|
                            std::numeric_limits<float>::quiet_NaN())));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN())));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that NanSensitiveFloatEq() describes itself properly.
 | 
						|
TEST(NanSensitiveFloatEqTest, CanDescribeSelfWithNaNs) {
 | 
						|
  Matcher<const ::testing::tuple<float, float>&> m = NanSensitiveFloatEq();
 | 
						|
  EXPECT_EQ("are an almost-equal pair", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that DoubleEq() matches a 2-tuple where
 | 
						|
// DoubleEq(first field) matches the second field.
 | 
						|
TEST(DoubleEq2Test, MatchesEqualArguments) {
 | 
						|
  typedef ::testing::tuple<double, double> Tpl;
 | 
						|
  Matcher<const Tpl&> m = DoubleEq();
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(0.3, 0.1 + 0.1 + 0.1)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.1, 1.0)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that DoubleEq() describes itself properly.
 | 
						|
TEST(DoubleEq2Test, CanDescribeSelf) {
 | 
						|
  Matcher<const ::testing::tuple<double, double>&> m = DoubleEq();
 | 
						|
  EXPECT_EQ("are an almost-equal pair", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that NanSensitiveDoubleEq() matches a 2-tuple where
 | 
						|
// NanSensitiveDoubleEq(first field) matches the second field.
 | 
						|
TEST(NanSensitiveDoubleEqTest, MatchesEqualArgumentsWithNaN) {
 | 
						|
  typedef ::testing::tuple<double, double> Tpl;
 | 
						|
  Matcher<const Tpl&> m = NanSensitiveDoubleEq();
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(),
 | 
						|
                            std::numeric_limits<double>::quiet_NaN())));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN())));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that DoubleEq() describes itself properly.
 | 
						|
TEST(NanSensitiveDoubleEqTest, CanDescribeSelfWithNaNs) {
 | 
						|
  Matcher<const ::testing::tuple<double, double>&> m = NanSensitiveDoubleEq();
 | 
						|
  EXPECT_EQ("are an almost-equal pair", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that FloatEq() matches a 2-tuple where
 | 
						|
// FloatNear(first field, max_abs_error) matches the second field.
 | 
						|
TEST(FloatNear2Test, MatchesEqualArguments) {
 | 
						|
  typedef ::testing::tuple<float, float> Tpl;
 | 
						|
  Matcher<const Tpl&> m = FloatNear(0.5f);
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.3f, 1.0f)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.8f, 1.0f)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that FloatNear() describes itself properly.
 | 
						|
TEST(FloatNear2Test, CanDescribeSelf) {
 | 
						|
  Matcher<const ::testing::tuple<float, float>&> m = FloatNear(0.5f);
 | 
						|
  EXPECT_EQ("are an almost-equal pair", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that NanSensitiveFloatNear() matches a 2-tuple where
 | 
						|
// NanSensitiveFloatNear(first field) matches the second field.
 | 
						|
TEST(NanSensitiveFloatNearTest, MatchesNearbyArgumentsWithNaN) {
 | 
						|
  typedef ::testing::tuple<float, float> Tpl;
 | 
						|
  Matcher<const Tpl&> m = NanSensitiveFloatNear(0.5f);
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(),
 | 
						|
                            std::numeric_limits<float>::quiet_NaN())));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN())));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that NanSensitiveFloatNear() describes itself properly.
 | 
						|
TEST(NanSensitiveFloatNearTest, CanDescribeSelfWithNaNs) {
 | 
						|
  Matcher<const ::testing::tuple<float, float>&> m =
 | 
						|
      NanSensitiveFloatNear(0.5f);
 | 
						|
  EXPECT_EQ("are an almost-equal pair", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that FloatEq() matches a 2-tuple where
 | 
						|
// DoubleNear(first field, max_abs_error) matches the second field.
 | 
						|
TEST(DoubleNear2Test, MatchesEqualArguments) {
 | 
						|
  typedef ::testing::tuple<double, double> Tpl;
 | 
						|
  Matcher<const Tpl&> m = DoubleNear(0.5);
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.3, 1.0)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.8, 1.0)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that DoubleNear() describes itself properly.
 | 
						|
TEST(DoubleNear2Test, CanDescribeSelf) {
 | 
						|
  Matcher<const ::testing::tuple<double, double>&> m = DoubleNear(0.5);
 | 
						|
  EXPECT_EQ("are an almost-equal pair", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that NanSensitiveDoubleNear() matches a 2-tuple where
 | 
						|
// NanSensitiveDoubleNear(first field) matches the second field.
 | 
						|
TEST(NanSensitiveDoubleNearTest, MatchesNearbyArgumentsWithNaN) {
 | 
						|
  typedef ::testing::tuple<double, double> Tpl;
 | 
						|
  Matcher<const Tpl&> m = NanSensitiveDoubleNear(0.5f);
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f)));
 | 
						|
  EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(),
 | 
						|
                            std::numeric_limits<double>::quiet_NaN())));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f)));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN())));
 | 
						|
  EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that NanSensitiveDoubleNear() describes itself properly.
 | 
						|
TEST(NanSensitiveDoubleNearTest, CanDescribeSelfWithNaNs) {
 | 
						|
  Matcher<const ::testing::tuple<double, double>&> m =
 | 
						|
      NanSensitiveDoubleNear(0.5f);
 | 
						|
  EXPECT_EQ("are an almost-equal pair", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Not(m) matches any value that doesn't match m.
 | 
						|
TEST(NotTest, NegatesMatcher) {
 | 
						|
  Matcher<int> m;
 | 
						|
  m = Not(Eq(2));
 | 
						|
  EXPECT_TRUE(m.Matches(3));
 | 
						|
  EXPECT_FALSE(m.Matches(2));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Not(m) describes itself properly.
 | 
						|
TEST(NotTest, CanDescribeSelf) {
 | 
						|
  Matcher<int> m = Not(Eq(5));
 | 
						|
  EXPECT_EQ("isn't equal to 5", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that monomorphic matchers are safely cast by the Not matcher.
 | 
						|
TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) {
 | 
						|
  // greater_than_5 is a monomorphic matcher.
 | 
						|
  Matcher<int> greater_than_5 = Gt(5);
 | 
						|
 | 
						|
  Matcher<const int&> m = Not(greater_than_5);
 | 
						|
  Matcher<int&> m2 = Not(greater_than_5);
 | 
						|
  Matcher<int&> m3 = Not(m);
 | 
						|
}
 | 
						|
 | 
						|
// Helper to allow easy testing of AllOf matchers with num parameters.
 | 
						|
void AllOfMatches(int num, const Matcher<int>& m) {
 | 
						|
  SCOPED_TRACE(Describe(m));
 | 
						|
  EXPECT_TRUE(m.Matches(0));
 | 
						|
  for (int i = 1; i <= num; ++i) {
 | 
						|
    EXPECT_FALSE(m.Matches(i));
 | 
						|
  }
 | 
						|
  EXPECT_TRUE(m.Matches(num + 1));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that AllOf(m1, ..., mn) matches any value that matches all of
 | 
						|
// the given matchers.
 | 
						|
TEST(AllOfTest, MatchesWhenAllMatch) {
 | 
						|
  Matcher<int> m;
 | 
						|
  m = AllOf(Le(2), Ge(1));
 | 
						|
  EXPECT_TRUE(m.Matches(1));
 | 
						|
  EXPECT_TRUE(m.Matches(2));
 | 
						|
  EXPECT_FALSE(m.Matches(0));
 | 
						|
  EXPECT_FALSE(m.Matches(3));
 | 
						|
 | 
						|
  m = AllOf(Gt(0), Ne(1), Ne(2));
 | 
						|
  EXPECT_TRUE(m.Matches(3));
 | 
						|
  EXPECT_FALSE(m.Matches(2));
 | 
						|
  EXPECT_FALSE(m.Matches(1));
 | 
						|
  EXPECT_FALSE(m.Matches(0));
 | 
						|
 | 
						|
  m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
 | 
						|
  EXPECT_TRUE(m.Matches(4));
 | 
						|
  EXPECT_FALSE(m.Matches(3));
 | 
						|
  EXPECT_FALSE(m.Matches(2));
 | 
						|
  EXPECT_FALSE(m.Matches(1));
 | 
						|
  EXPECT_FALSE(m.Matches(0));
 | 
						|
 | 
						|
  m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
 | 
						|
  EXPECT_TRUE(m.Matches(0));
 | 
						|
  EXPECT_TRUE(m.Matches(1));
 | 
						|
  EXPECT_FALSE(m.Matches(3));
 | 
						|
 | 
						|
  // The following tests for varying number of sub-matchers. Due to the way
 | 
						|
  // the sub-matchers are handled it is enough to test every sub-matcher once
 | 
						|
  // with sub-matchers using the same matcher type. Varying matcher types are
 | 
						|
  // checked for above.
 | 
						|
  AllOfMatches(2, AllOf(Ne(1), Ne(2)));
 | 
						|
  AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3)));
 | 
						|
  AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4)));
 | 
						|
  AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5)));
 | 
						|
  AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6)));
 | 
						|
  AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7)));
 | 
						|
  AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7),
 | 
						|
                        Ne(8)));
 | 
						|
  AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7),
 | 
						|
                        Ne(8), Ne(9)));
 | 
						|
  AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
 | 
						|
                         Ne(9), Ne(10)));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
// Tests the variadic version of the AllOfMatcher.
 | 
						|
TEST(AllOfTest, VariadicMatchesWhenAllMatch) {
 | 
						|
  // Make sure AllOf is defined in the right namespace and does not depend on
 | 
						|
  // ADL.
 | 
						|
  ::testing::AllOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
 | 
						|
  Matcher<int> m = AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
 | 
						|
                         Ne(9), Ne(10), Ne(11));
 | 
						|
  EXPECT_THAT(Describe(m), EndsWith("and (isn't equal to 11))))))))))"));
 | 
						|
  AllOfMatches(11, m);
 | 
						|
  AllOfMatches(50, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
 | 
						|
                         Ne(9), Ne(10), Ne(11), Ne(12), Ne(13), Ne(14), Ne(15),
 | 
						|
                         Ne(16), Ne(17), Ne(18), Ne(19), Ne(20), Ne(21), Ne(22),
 | 
						|
                         Ne(23), Ne(24), Ne(25), Ne(26), Ne(27), Ne(28), Ne(29),
 | 
						|
                         Ne(30), Ne(31), Ne(32), Ne(33), Ne(34), Ne(35), Ne(36),
 | 
						|
                         Ne(37), Ne(38), Ne(39), Ne(40), Ne(41), Ne(42), Ne(43),
 | 
						|
                         Ne(44), Ne(45), Ne(46), Ne(47), Ne(48), Ne(49),
 | 
						|
                         Ne(50)));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // GTEST_LANG_CXX11
 | 
						|
 | 
						|
// Tests that AllOf(m1, ..., mn) describes itself properly.
 | 
						|
TEST(AllOfTest, CanDescribeSelf) {
 | 
						|
  Matcher<int> m;
 | 
						|
  m = AllOf(Le(2), Ge(1));
 | 
						|
  EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m));
 | 
						|
 | 
						|
  m = AllOf(Gt(0), Ne(1), Ne(2));
 | 
						|
  EXPECT_EQ("(is > 0) and "
 | 
						|
            "((isn't equal to 1) and "
 | 
						|
            "(isn't equal to 2))",
 | 
						|
            Describe(m));
 | 
						|
 | 
						|
 | 
						|
  m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
 | 
						|
  EXPECT_EQ("((is > 0) and "
 | 
						|
            "(isn't equal to 1)) and "
 | 
						|
            "((isn't equal to 2) and "
 | 
						|
            "(isn't equal to 3))",
 | 
						|
            Describe(m));
 | 
						|
 | 
						|
 | 
						|
  m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
 | 
						|
  EXPECT_EQ("((is >= 0) and "
 | 
						|
            "(is < 10)) and "
 | 
						|
            "((isn't equal to 3) and "
 | 
						|
            "((isn't equal to 5) and "
 | 
						|
            "(isn't equal to 7)))",
 | 
						|
            Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that AllOf(m1, ..., mn) describes its negation properly.
 | 
						|
TEST(AllOfTest, CanDescribeNegation) {
 | 
						|
  Matcher<int> m;
 | 
						|
  m = AllOf(Le(2), Ge(1));
 | 
						|
  EXPECT_EQ("(isn't <= 2) or "
 | 
						|
            "(isn't >= 1)",
 | 
						|
            DescribeNegation(m));
 | 
						|
 | 
						|
  m = AllOf(Gt(0), Ne(1), Ne(2));
 | 
						|
  EXPECT_EQ("(isn't > 0) or "
 | 
						|
            "((is equal to 1) or "
 | 
						|
            "(is equal to 2))",
 | 
						|
            DescribeNegation(m));
 | 
						|
 | 
						|
 | 
						|
  m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
 | 
						|
  EXPECT_EQ("((isn't > 0) or "
 | 
						|
            "(is equal to 1)) or "
 | 
						|
            "((is equal to 2) or "
 | 
						|
            "(is equal to 3))",
 | 
						|
            DescribeNegation(m));
 | 
						|
 | 
						|
 | 
						|
  m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
 | 
						|
  EXPECT_EQ("((isn't >= 0) or "
 | 
						|
            "(isn't < 10)) or "
 | 
						|
            "((is equal to 3) or "
 | 
						|
            "((is equal to 5) or "
 | 
						|
            "(is equal to 7)))",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that monomorphic matchers are safely cast by the AllOf matcher.
 | 
						|
TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) {
 | 
						|
  // greater_than_5 and less_than_10 are monomorphic matchers.
 | 
						|
  Matcher<int> greater_than_5 = Gt(5);
 | 
						|
  Matcher<int> less_than_10 = Lt(10);
 | 
						|
 | 
						|
  Matcher<const int&> m = AllOf(greater_than_5, less_than_10);
 | 
						|
  Matcher<int&> m2 = AllOf(greater_than_5, less_than_10);
 | 
						|
  Matcher<int&> m3 = AllOf(greater_than_5, m2);
 | 
						|
 | 
						|
  // Tests that BothOf works when composing itself.
 | 
						|
  Matcher<const int&> m4 = AllOf(greater_than_5, less_than_10, less_than_10);
 | 
						|
  Matcher<int&> m5 = AllOf(greater_than_5, less_than_10, less_than_10);
 | 
						|
}
 | 
						|
 | 
						|
TEST(AllOfTest, ExplainsResult) {
 | 
						|
  Matcher<int> m;
 | 
						|
 | 
						|
  // Successful match.  Both matchers need to explain.  The second
 | 
						|
  // matcher doesn't give an explanation, so only the first matcher's
 | 
						|
  // explanation is printed.
 | 
						|
  m = AllOf(GreaterThan(10), Lt(30));
 | 
						|
  EXPECT_EQ("which is 15 more than 10", Explain(m, 25));
 | 
						|
 | 
						|
  // Successful match.  Both matchers need to explain.
 | 
						|
  m = AllOf(GreaterThan(10), GreaterThan(20));
 | 
						|
  EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20",
 | 
						|
            Explain(m, 30));
 | 
						|
 | 
						|
  // Successful match.  All matchers need to explain.  The second
 | 
						|
  // matcher doesn't given an explanation.
 | 
						|
  m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20));
 | 
						|
  EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20",
 | 
						|
            Explain(m, 25));
 | 
						|
 | 
						|
  // Successful match.  All matchers need to explain.
 | 
						|
  m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30));
 | 
						|
  EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, "
 | 
						|
            "and which is 10 more than 30",
 | 
						|
            Explain(m, 40));
 | 
						|
 | 
						|
  // Failed match.  The first matcher, which failed, needs to
 | 
						|
  // explain.
 | 
						|
  m = AllOf(GreaterThan(10), GreaterThan(20));
 | 
						|
  EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
 | 
						|
 | 
						|
  // Failed match.  The second matcher, which failed, needs to
 | 
						|
  // explain.  Since it doesn't given an explanation, nothing is
 | 
						|
  // printed.
 | 
						|
  m = AllOf(GreaterThan(10), Lt(30));
 | 
						|
  EXPECT_EQ("", Explain(m, 40));
 | 
						|
 | 
						|
  // Failed match.  The second matcher, which failed, needs to
 | 
						|
  // explain.
 | 
						|
  m = AllOf(GreaterThan(10), GreaterThan(20));
 | 
						|
  EXPECT_EQ("which is 5 less than 20", Explain(m, 15));
 | 
						|
}
 | 
						|
 | 
						|
// Helper to allow easy testing of AnyOf matchers with num parameters.
 | 
						|
void AnyOfMatches(int num, const Matcher<int>& m) {
 | 
						|
  SCOPED_TRACE(Describe(m));
 | 
						|
  EXPECT_FALSE(m.Matches(0));
 | 
						|
  for (int i = 1; i <= num; ++i) {
 | 
						|
    EXPECT_TRUE(m.Matches(i));
 | 
						|
  }
 | 
						|
  EXPECT_FALSE(m.Matches(num + 1));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that AnyOf(m1, ..., mn) matches any value that matches at
 | 
						|
// least one of the given matchers.
 | 
						|
TEST(AnyOfTest, MatchesWhenAnyMatches) {
 | 
						|
  Matcher<int> m;
 | 
						|
  m = AnyOf(Le(1), Ge(3));
 | 
						|
  EXPECT_TRUE(m.Matches(1));
 | 
						|
  EXPECT_TRUE(m.Matches(4));
 | 
						|
  EXPECT_FALSE(m.Matches(2));
 | 
						|
 | 
						|
  m = AnyOf(Lt(0), Eq(1), Eq(2));
 | 
						|
  EXPECT_TRUE(m.Matches(-1));
 | 
						|
  EXPECT_TRUE(m.Matches(1));
 | 
						|
  EXPECT_TRUE(m.Matches(2));
 | 
						|
  EXPECT_FALSE(m.Matches(0));
 | 
						|
 | 
						|
  m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
 | 
						|
  EXPECT_TRUE(m.Matches(-1));
 | 
						|
  EXPECT_TRUE(m.Matches(1));
 | 
						|
  EXPECT_TRUE(m.Matches(2));
 | 
						|
  EXPECT_TRUE(m.Matches(3));
 | 
						|
  EXPECT_FALSE(m.Matches(0));
 | 
						|
 | 
						|
  m = AnyOf(Le(0), Gt(10), 3, 5, 7);
 | 
						|
  EXPECT_TRUE(m.Matches(0));
 | 
						|
  EXPECT_TRUE(m.Matches(11));
 | 
						|
  EXPECT_TRUE(m.Matches(3));
 | 
						|
  EXPECT_FALSE(m.Matches(2));
 | 
						|
 | 
						|
  // The following tests for varying number of sub-matchers. Due to the way
 | 
						|
  // the sub-matchers are handled it is enough to test every sub-matcher once
 | 
						|
  // with sub-matchers using the same matcher type. Varying matcher types are
 | 
						|
  // checked for above.
 | 
						|
  AnyOfMatches(2, AnyOf(1, 2));
 | 
						|
  AnyOfMatches(3, AnyOf(1, 2, 3));
 | 
						|
  AnyOfMatches(4, AnyOf(1, 2, 3, 4));
 | 
						|
  AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5));
 | 
						|
  AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6));
 | 
						|
  AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7));
 | 
						|
  AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8));
 | 
						|
  AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9));
 | 
						|
  AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
// Tests the variadic version of the AnyOfMatcher.
 | 
						|
TEST(AnyOfTest, VariadicMatchesWhenAnyMatches) {
 | 
						|
  // Also make sure AnyOf is defined in the right namespace and does not depend
 | 
						|
  // on ADL.
 | 
						|
  Matcher<int> m = ::testing::AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
 | 
						|
 | 
						|
  EXPECT_THAT(Describe(m), EndsWith("or (is equal to 11))))))))))"));
 | 
						|
  AnyOfMatches(11, m);
 | 
						|
  AnyOfMatches(50, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
 | 
						|
                         11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
 | 
						|
                         21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
 | 
						|
                         31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
 | 
						|
                         41, 42, 43, 44, 45, 46, 47, 48, 49, 50));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // GTEST_LANG_CXX11
 | 
						|
 | 
						|
// Tests that AnyOf(m1, ..., mn) describes itself properly.
 | 
						|
TEST(AnyOfTest, CanDescribeSelf) {
 | 
						|
  Matcher<int> m;
 | 
						|
  m = AnyOf(Le(1), Ge(3));
 | 
						|
  EXPECT_EQ("(is <= 1) or (is >= 3)",
 | 
						|
            Describe(m));
 | 
						|
 | 
						|
  m = AnyOf(Lt(0), Eq(1), Eq(2));
 | 
						|
  EXPECT_EQ("(is < 0) or "
 | 
						|
            "((is equal to 1) or (is equal to 2))",
 | 
						|
            Describe(m));
 | 
						|
 | 
						|
  m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
 | 
						|
  EXPECT_EQ("((is < 0) or "
 | 
						|
            "(is equal to 1)) or "
 | 
						|
            "((is equal to 2) or "
 | 
						|
            "(is equal to 3))",
 | 
						|
            Describe(m));
 | 
						|
 | 
						|
  m = AnyOf(Le(0), Gt(10), 3, 5, 7);
 | 
						|
  EXPECT_EQ("((is <= 0) or "
 | 
						|
            "(is > 10)) or "
 | 
						|
            "((is equal to 3) or "
 | 
						|
            "((is equal to 5) or "
 | 
						|
            "(is equal to 7)))",
 | 
						|
            Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that AnyOf(m1, ..., mn) describes its negation properly.
 | 
						|
TEST(AnyOfTest, CanDescribeNegation) {
 | 
						|
  Matcher<int> m;
 | 
						|
  m = AnyOf(Le(1), Ge(3));
 | 
						|
  EXPECT_EQ("(isn't <= 1) and (isn't >= 3)",
 | 
						|
            DescribeNegation(m));
 | 
						|
 | 
						|
  m = AnyOf(Lt(0), Eq(1), Eq(2));
 | 
						|
  EXPECT_EQ("(isn't < 0) and "
 | 
						|
            "((isn't equal to 1) and (isn't equal to 2))",
 | 
						|
            DescribeNegation(m));
 | 
						|
 | 
						|
  m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
 | 
						|
  EXPECT_EQ("((isn't < 0) and "
 | 
						|
            "(isn't equal to 1)) and "
 | 
						|
            "((isn't equal to 2) and "
 | 
						|
            "(isn't equal to 3))",
 | 
						|
            DescribeNegation(m));
 | 
						|
 | 
						|
  m = AnyOf(Le(0), Gt(10), 3, 5, 7);
 | 
						|
  EXPECT_EQ("((isn't <= 0) and "
 | 
						|
            "(isn't > 10)) and "
 | 
						|
            "((isn't equal to 3) and "
 | 
						|
            "((isn't equal to 5) and "
 | 
						|
            "(isn't equal to 7)))",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that monomorphic matchers are safely cast by the AnyOf matcher.
 | 
						|
TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) {
 | 
						|
  // greater_than_5 and less_than_10 are monomorphic matchers.
 | 
						|
  Matcher<int> greater_than_5 = Gt(5);
 | 
						|
  Matcher<int> less_than_10 = Lt(10);
 | 
						|
 | 
						|
  Matcher<const int&> m = AnyOf(greater_than_5, less_than_10);
 | 
						|
  Matcher<int&> m2 = AnyOf(greater_than_5, less_than_10);
 | 
						|
  Matcher<int&> m3 = AnyOf(greater_than_5, m2);
 | 
						|
 | 
						|
  // Tests that EitherOf works when composing itself.
 | 
						|
  Matcher<const int&> m4 = AnyOf(greater_than_5, less_than_10, less_than_10);
 | 
						|
  Matcher<int&> m5 = AnyOf(greater_than_5, less_than_10, less_than_10);
 | 
						|
}
 | 
						|
 | 
						|
TEST(AnyOfTest, ExplainsResult) {
 | 
						|
  Matcher<int> m;
 | 
						|
 | 
						|
  // Failed match.  Both matchers need to explain.  The second
 | 
						|
  // matcher doesn't give an explanation, so only the first matcher's
 | 
						|
  // explanation is printed.
 | 
						|
  m = AnyOf(GreaterThan(10), Lt(0));
 | 
						|
  EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
 | 
						|
 | 
						|
  // Failed match.  Both matchers need to explain.
 | 
						|
  m = AnyOf(GreaterThan(10), GreaterThan(20));
 | 
						|
  EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20",
 | 
						|
            Explain(m, 5));
 | 
						|
 | 
						|
  // Failed match.  All matchers need to explain.  The second
 | 
						|
  // matcher doesn't given an explanation.
 | 
						|
  m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30));
 | 
						|
  EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30",
 | 
						|
            Explain(m, 5));
 | 
						|
 | 
						|
  // Failed match.  All matchers need to explain.
 | 
						|
  m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30));
 | 
						|
  EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, "
 | 
						|
            "and which is 25 less than 30",
 | 
						|
            Explain(m, 5));
 | 
						|
 | 
						|
  // Successful match.  The first matcher, which succeeded, needs to
 | 
						|
  // explain.
 | 
						|
  m = AnyOf(GreaterThan(10), GreaterThan(20));
 | 
						|
  EXPECT_EQ("which is 5 more than 10", Explain(m, 15));
 | 
						|
 | 
						|
  // Successful match.  The second matcher, which succeeded, needs to
 | 
						|
  // explain.  Since it doesn't given an explanation, nothing is
 | 
						|
  // printed.
 | 
						|
  m = AnyOf(GreaterThan(10), Lt(30));
 | 
						|
  EXPECT_EQ("", Explain(m, 0));
 | 
						|
 | 
						|
  // Successful match.  The second matcher, which succeeded, needs to
 | 
						|
  // explain.
 | 
						|
  m = AnyOf(GreaterThan(30), GreaterThan(20));
 | 
						|
  EXPECT_EQ("which is 5 more than 20", Explain(m, 25));
 | 
						|
}
 | 
						|
 | 
						|
// The following predicate function and predicate functor are for
 | 
						|
// testing the Truly(predicate) matcher.
 | 
						|
 | 
						|
// Returns non-zero if the input is positive.  Note that the return
 | 
						|
// type of this function is not bool.  It's OK as Truly() accepts any
 | 
						|
// unary function or functor whose return type can be implicitly
 | 
						|
// converted to bool.
 | 
						|
int IsPositive(double x) {
 | 
						|
  return x > 0 ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
// This functor returns true if the input is greater than the given
 | 
						|
// number.
 | 
						|
class IsGreaterThan {
 | 
						|
 public:
 | 
						|
  explicit IsGreaterThan(int threshold) : threshold_(threshold) {}
 | 
						|
 | 
						|
  bool operator()(int n) const { return n > threshold_; }
 | 
						|
 | 
						|
 private:
 | 
						|
  int threshold_;
 | 
						|
};
 | 
						|
 | 
						|
// For testing Truly().
 | 
						|
const int foo = 0;
 | 
						|
 | 
						|
// This predicate returns true iff the argument references foo and has
 | 
						|
// a zero value.
 | 
						|
bool ReferencesFooAndIsZero(const int& n) {
 | 
						|
  return (&n == &foo) && (n == 0);
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Truly(predicate) matches what satisfies the given
 | 
						|
// predicate.
 | 
						|
TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) {
 | 
						|
  Matcher<double> m = Truly(IsPositive);
 | 
						|
  EXPECT_TRUE(m.Matches(2.0));
 | 
						|
  EXPECT_FALSE(m.Matches(-1.5));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Truly(predicate_functor) works too.
 | 
						|
TEST(TrulyTest, CanBeUsedWithFunctor) {
 | 
						|
  Matcher<int> m = Truly(IsGreaterThan(5));
 | 
						|
  EXPECT_TRUE(m.Matches(6));
 | 
						|
  EXPECT_FALSE(m.Matches(4));
 | 
						|
}
 | 
						|
 | 
						|
// A class that can be implicitly converted to bool.
 | 
						|
class ConvertibleToBool {
 | 
						|
 public:
 | 
						|
  explicit ConvertibleToBool(int number) : number_(number) {}
 | 
						|
  operator bool() const { return number_ != 0; }
 | 
						|
 | 
						|
 private:
 | 
						|
  int number_;
 | 
						|
};
 | 
						|
 | 
						|
ConvertibleToBool IsNotZero(int number) {
 | 
						|
  return ConvertibleToBool(number);
 | 
						|
}
 | 
						|
 | 
						|
// Tests that the predicate used in Truly() may return a class that's
 | 
						|
// implicitly convertible to bool, even when the class has no
 | 
						|
// operator!().
 | 
						|
TEST(TrulyTest, PredicateCanReturnAClassConvertibleToBool) {
 | 
						|
  Matcher<int> m = Truly(IsNotZero);
 | 
						|
  EXPECT_TRUE(m.Matches(1));
 | 
						|
  EXPECT_FALSE(m.Matches(0));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Truly(predicate) can describe itself properly.
 | 
						|
TEST(TrulyTest, CanDescribeSelf) {
 | 
						|
  Matcher<double> m = Truly(IsPositive);
 | 
						|
  EXPECT_EQ("satisfies the given predicate",
 | 
						|
            Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Truly(predicate) works when the matcher takes its
 | 
						|
// argument by reference.
 | 
						|
TEST(TrulyTest, WorksForByRefArguments) {
 | 
						|
  Matcher<const int&> m = Truly(ReferencesFooAndIsZero);
 | 
						|
  EXPECT_TRUE(m.Matches(foo));
 | 
						|
  int n = 0;
 | 
						|
  EXPECT_FALSE(m.Matches(n));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Matches(m) is a predicate satisfied by whatever that
 | 
						|
// matches matcher m.
 | 
						|
TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) {
 | 
						|
  EXPECT_TRUE(Matches(Ge(0))(1));
 | 
						|
  EXPECT_FALSE(Matches(Eq('a'))('b'));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Matches(m) works when the matcher takes its argument by
 | 
						|
// reference.
 | 
						|
TEST(MatchesTest, WorksOnByRefArguments) {
 | 
						|
  int m = 0, n = 0;
 | 
						|
  EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n));
 | 
						|
  EXPECT_FALSE(Matches(Ref(m))(n));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that a Matcher on non-reference type can be used in
 | 
						|
// Matches().
 | 
						|
TEST(MatchesTest, WorksWithMatcherOnNonRefType) {
 | 
						|
  Matcher<int> eq5 = Eq(5);
 | 
						|
  EXPECT_TRUE(Matches(eq5)(5));
 | 
						|
  EXPECT_FALSE(Matches(eq5)(2));
 | 
						|
}
 | 
						|
 | 
						|
// Tests Value(value, matcher).  Since Value() is a simple wrapper for
 | 
						|
// Matches(), which has been tested already, we don't spend a lot of
 | 
						|
// effort on testing Value().
 | 
						|
TEST(ValueTest, WorksWithPolymorphicMatcher) {
 | 
						|
  EXPECT_TRUE(Value("hi", StartsWith("h")));
 | 
						|
  EXPECT_FALSE(Value(5, Gt(10)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ValueTest, WorksWithMonomorphicMatcher) {
 | 
						|
  const Matcher<int> is_zero = Eq(0);
 | 
						|
  EXPECT_TRUE(Value(0, is_zero));
 | 
						|
  EXPECT_FALSE(Value('a', is_zero));
 | 
						|
 | 
						|
  int n = 0;
 | 
						|
  const Matcher<const int&> ref_n = Ref(n);
 | 
						|
  EXPECT_TRUE(Value(n, ref_n));
 | 
						|
  EXPECT_FALSE(Value(1, ref_n));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) {
 | 
						|
  StringMatchResultListener listener1;
 | 
						|
  EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1));
 | 
						|
  EXPECT_EQ("% 2 == 0", listener1.str());
 | 
						|
 | 
						|
  StringMatchResultListener listener2;
 | 
						|
  EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2));
 | 
						|
  EXPECT_EQ("", listener2.str());
 | 
						|
}
 | 
						|
 | 
						|
TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) {
 | 
						|
  const Matcher<int> is_even = PolymorphicIsEven();
 | 
						|
  StringMatchResultListener listener1;
 | 
						|
  EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1));
 | 
						|
  EXPECT_EQ("% 2 == 0", listener1.str());
 | 
						|
 | 
						|
  const Matcher<const double&> is_zero = Eq(0);
 | 
						|
  StringMatchResultListener listener2;
 | 
						|
  EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2));
 | 
						|
  EXPECT_EQ("", listener2.str());
 | 
						|
}
 | 
						|
 | 
						|
MATCHER_P(Really, inner_matcher, "") {
 | 
						|
  return ExplainMatchResult(inner_matcher, arg, result_listener);
 | 
						|
}
 | 
						|
 | 
						|
TEST(ExplainMatchResultTest, WorksInsideMATCHER) {
 | 
						|
  EXPECT_THAT(0, Really(Eq(0)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(DescribeMatcherTest, WorksWithValue) {
 | 
						|
  EXPECT_EQ("is equal to 42", DescribeMatcher<int>(42));
 | 
						|
  EXPECT_EQ("isn't equal to 42", DescribeMatcher<int>(42, true));
 | 
						|
}
 | 
						|
 | 
						|
TEST(DescribeMatcherTest, WorksWithMonomorphicMatcher) {
 | 
						|
  const Matcher<int> monomorphic = Le(0);
 | 
						|
  EXPECT_EQ("is <= 0", DescribeMatcher<int>(monomorphic));
 | 
						|
  EXPECT_EQ("isn't <= 0", DescribeMatcher<int>(monomorphic, true));
 | 
						|
}
 | 
						|
 | 
						|
TEST(DescribeMatcherTest, WorksWithPolymorphicMatcher) {
 | 
						|
  EXPECT_EQ("is even", DescribeMatcher<int>(PolymorphicIsEven()));
 | 
						|
  EXPECT_EQ("is odd", DescribeMatcher<int>(PolymorphicIsEven(), true));
 | 
						|
}
 | 
						|
 | 
						|
TEST(AllArgsTest, WorksForTuple) {
 | 
						|
  EXPECT_THAT(make_tuple(1, 2L), AllArgs(Lt()));
 | 
						|
  EXPECT_THAT(make_tuple(2L, 1), Not(AllArgs(Lt())));
 | 
						|
}
 | 
						|
 | 
						|
TEST(AllArgsTest, WorksForNonTuple) {
 | 
						|
  EXPECT_THAT(42, AllArgs(Gt(0)));
 | 
						|
  EXPECT_THAT('a', Not(AllArgs(Eq('b'))));
 | 
						|
}
 | 
						|
 | 
						|
class AllArgsHelper {
 | 
						|
 public:
 | 
						|
  AllArgsHelper() {}
 | 
						|
 | 
						|
  MOCK_METHOD2(Helper, int(char x, int y));
 | 
						|
 | 
						|
 private:
 | 
						|
  GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper);
 | 
						|
};
 | 
						|
 | 
						|
TEST(AllArgsTest, WorksInWithClause) {
 | 
						|
  AllArgsHelper helper;
 | 
						|
  ON_CALL(helper, Helper(_, _))
 | 
						|
      .With(AllArgs(Lt()))
 | 
						|
      .WillByDefault(Return(1));
 | 
						|
  EXPECT_CALL(helper, Helper(_, _));
 | 
						|
  EXPECT_CALL(helper, Helper(_, _))
 | 
						|
      .With(AllArgs(Gt()))
 | 
						|
      .WillOnce(Return(2));
 | 
						|
 | 
						|
  EXPECT_EQ(1, helper.Helper('\1', 2));
 | 
						|
  EXPECT_EQ(2, helper.Helper('a', 1));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the value
 | 
						|
// matches the matcher.
 | 
						|
TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) {
 | 
						|
  ASSERT_THAT(5, Ge(2)) << "This should succeed.";
 | 
						|
  ASSERT_THAT("Foo", EndsWith("oo"));
 | 
						|
  EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too.";
 | 
						|
  EXPECT_THAT("Hello", StartsWith("Hell"));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the value
 | 
						|
// doesn't match the matcher.
 | 
						|
TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) {
 | 
						|
  // 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(),
 | 
						|
  // which cannot reference auto variables.
 | 
						|
  static unsigned short n;  // NOLINT
 | 
						|
  n = 5;
 | 
						|
 | 
						|
  // VC++ prior to version 8.0 SP1 has a bug where it will not see any
 | 
						|
  // functions declared in the namespace scope from within nested classes.
 | 
						|
  // EXPECT/ASSERT_(NON)FATAL_FAILURE macros use nested classes so that all
 | 
						|
  // namespace-level functions invoked inside them need to be explicitly
 | 
						|
  // resolved.
 | 
						|
  EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Gt(10)),
 | 
						|
                       "Value of: n\n"
 | 
						|
                       "Expected: is > 10\n"
 | 
						|
                       "  Actual: 5" + OfType("unsigned short"));
 | 
						|
  n = 0;
 | 
						|
  EXPECT_NONFATAL_FAILURE(
 | 
						|
      EXPECT_THAT(n, ::testing::AllOf(::testing::Le(7), ::testing::Ge(5))),
 | 
						|
      "Value of: n\n"
 | 
						|
      "Expected: (is <= 7) and (is >= 5)\n"
 | 
						|
      "  Actual: 0" + OfType("unsigned short"));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument
 | 
						|
// has a reference type.
 | 
						|
TEST(MatcherAssertionTest, WorksForByRefArguments) {
 | 
						|
  // We use a static variable here as EXPECT_FATAL_FAILURE() cannot
 | 
						|
  // reference auto variables.
 | 
						|
  static int n;
 | 
						|
  n = 0;
 | 
						|
  EXPECT_THAT(n, AllOf(Le(7), Ref(n)));
 | 
						|
  EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))),
 | 
						|
                       "Value of: n\n"
 | 
						|
                       "Expected: does not reference the variable @");
 | 
						|
  // Tests the "Actual" part.
 | 
						|
  EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))),
 | 
						|
                       "Actual: 0" + OfType("int") + ", which is located @");
 | 
						|
}
 | 
						|
 | 
						|
#if !GTEST_OS_SYMBIAN
 | 
						|
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is
 | 
						|
// monomorphic.
 | 
						|
 | 
						|
// ASSERT_THAT("hello", starts_with_he) fails to compile with Nokia's
 | 
						|
// Symbian compiler: it tries to compile
 | 
						|
// template<T, U> class MatcherCastImpl { ...
 | 
						|
//   virtual bool MatchAndExplain(T x, ...) const {
 | 
						|
//     return source_matcher_.MatchAndExplain(static_cast<U>(x), ...);
 | 
						|
// with U == string and T == const char*
 | 
						|
// With ASSERT_THAT("hello"...) changed to ASSERT_THAT(string("hello") ... )
 | 
						|
// the compiler silently crashes with no output.
 | 
						|
// If MatcherCastImpl is changed to use U(x) instead of static_cast<U>(x)
 | 
						|
// the code compiles but the converted string is bogus.
 | 
						|
TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) {
 | 
						|
  Matcher<const char*> starts_with_he = StartsWith("he");
 | 
						|
  ASSERT_THAT("hello", starts_with_he);
 | 
						|
 | 
						|
  Matcher<const std::string&> ends_with_ok = EndsWith("ok");
 | 
						|
  ASSERT_THAT("book", ends_with_ok);
 | 
						|
  const std::string bad = "bad";
 | 
						|
  EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok),
 | 
						|
                          "Value of: bad\n"
 | 
						|
                          "Expected: ends with \"ok\"\n"
 | 
						|
                          "  Actual: \"bad\"");
 | 
						|
  Matcher<int> is_greater_than_5 = Gt(5);
 | 
						|
  EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5),
 | 
						|
                          "Value of: 5\n"
 | 
						|
                          "Expected: is > 5\n"
 | 
						|
                          "  Actual: 5" + OfType("int"));
 | 
						|
}
 | 
						|
#endif  // !GTEST_OS_SYMBIAN
 | 
						|
 | 
						|
// Tests floating-point matchers.
 | 
						|
template <typename RawType>
 | 
						|
class FloatingPointTest : public testing::Test {
 | 
						|
 protected:
 | 
						|
  typedef testing::internal::FloatingPoint<RawType> Floating;
 | 
						|
  typedef typename Floating::Bits Bits;
 | 
						|
 | 
						|
  FloatingPointTest()
 | 
						|
      : max_ulps_(Floating::kMaxUlps),
 | 
						|
        zero_bits_(Floating(0).bits()),
 | 
						|
        one_bits_(Floating(1).bits()),
 | 
						|
        infinity_bits_(Floating(Floating::Infinity()).bits()),
 | 
						|
        close_to_positive_zero_(
 | 
						|
            Floating::ReinterpretBits(zero_bits_ + max_ulps_/2)),
 | 
						|
        close_to_negative_zero_(
 | 
						|
            -Floating::ReinterpretBits(zero_bits_ + max_ulps_ - max_ulps_/2)),
 | 
						|
        further_from_negative_zero_(-Floating::ReinterpretBits(
 | 
						|
            zero_bits_ + max_ulps_ + 1 - max_ulps_/2)),
 | 
						|
        close_to_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_)),
 | 
						|
        further_from_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_ + 1)),
 | 
						|
        infinity_(Floating::Infinity()),
 | 
						|
        close_to_infinity_(
 | 
						|
            Floating::ReinterpretBits(infinity_bits_ - max_ulps_)),
 | 
						|
        further_from_infinity_(
 | 
						|
            Floating::ReinterpretBits(infinity_bits_ - max_ulps_ - 1)),
 | 
						|
        max_(Floating::Max()),
 | 
						|
        nan1_(Floating::ReinterpretBits(Floating::kExponentBitMask | 1)),
 | 
						|
        nan2_(Floating::ReinterpretBits(Floating::kExponentBitMask | 200)) {
 | 
						|
  }
 | 
						|
 | 
						|
  void TestSize() {
 | 
						|
    EXPECT_EQ(sizeof(RawType), sizeof(Bits));
 | 
						|
  }
 | 
						|
 | 
						|
  // A battery of tests for FloatingEqMatcher::Matches.
 | 
						|
  // matcher_maker is a pointer to a function which creates a FloatingEqMatcher.
 | 
						|
  void TestMatches(
 | 
						|
      testing::internal::FloatingEqMatcher<RawType> (*matcher_maker)(RawType)) {
 | 
						|
    Matcher<RawType> m1 = matcher_maker(0.0);
 | 
						|
    EXPECT_TRUE(m1.Matches(-0.0));
 | 
						|
    EXPECT_TRUE(m1.Matches(close_to_positive_zero_));
 | 
						|
    EXPECT_TRUE(m1.Matches(close_to_negative_zero_));
 | 
						|
    EXPECT_FALSE(m1.Matches(1.0));
 | 
						|
 | 
						|
    Matcher<RawType> m2 = matcher_maker(close_to_positive_zero_);
 | 
						|
    EXPECT_FALSE(m2.Matches(further_from_negative_zero_));
 | 
						|
 | 
						|
    Matcher<RawType> m3 = matcher_maker(1.0);
 | 
						|
    EXPECT_TRUE(m3.Matches(close_to_one_));
 | 
						|
    EXPECT_FALSE(m3.Matches(further_from_one_));
 | 
						|
 | 
						|
    // Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above.
 | 
						|
    EXPECT_FALSE(m3.Matches(0.0));
 | 
						|
 | 
						|
    Matcher<RawType> m4 = matcher_maker(-infinity_);
 | 
						|
    EXPECT_TRUE(m4.Matches(-close_to_infinity_));
 | 
						|
 | 
						|
    Matcher<RawType> m5 = matcher_maker(infinity_);
 | 
						|
    EXPECT_TRUE(m5.Matches(close_to_infinity_));
 | 
						|
 | 
						|
    // This is interesting as the representations of infinity_ and nan1_
 | 
						|
    // are only 1 DLP apart.
 | 
						|
    EXPECT_FALSE(m5.Matches(nan1_));
 | 
						|
 | 
						|
    // matcher_maker can produce a Matcher<const RawType&>, which is needed in
 | 
						|
    // some cases.
 | 
						|
    Matcher<const RawType&> m6 = matcher_maker(0.0);
 | 
						|
    EXPECT_TRUE(m6.Matches(-0.0));
 | 
						|
    EXPECT_TRUE(m6.Matches(close_to_positive_zero_));
 | 
						|
    EXPECT_FALSE(m6.Matches(1.0));
 | 
						|
 | 
						|
    // matcher_maker can produce a Matcher<RawType&>, which is needed in some
 | 
						|
    // cases.
 | 
						|
    Matcher<RawType&> m7 = matcher_maker(0.0);
 | 
						|
    RawType x = 0.0;
 | 
						|
    EXPECT_TRUE(m7.Matches(x));
 | 
						|
    x = 0.01f;
 | 
						|
    EXPECT_FALSE(m7.Matches(x));
 | 
						|
  }
 | 
						|
 | 
						|
  // Pre-calculated numbers to be used by the tests.
 | 
						|
 | 
						|
  const Bits max_ulps_;
 | 
						|
 | 
						|
  const Bits zero_bits_;  // The bits that represent 0.0.
 | 
						|
  const Bits one_bits_;  // The bits that represent 1.0.
 | 
						|
  const Bits infinity_bits_;  // The bits that represent +infinity.
 | 
						|
 | 
						|
  // Some numbers close to 0.0.
 | 
						|
  const RawType close_to_positive_zero_;
 | 
						|
  const RawType close_to_negative_zero_;
 | 
						|
  const RawType further_from_negative_zero_;
 | 
						|
 | 
						|
  // Some numbers close to 1.0.
 | 
						|
  const RawType close_to_one_;
 | 
						|
  const RawType further_from_one_;
 | 
						|
 | 
						|
  // Some numbers close to +infinity.
 | 
						|
  const RawType infinity_;
 | 
						|
  const RawType close_to_infinity_;
 | 
						|
  const RawType further_from_infinity_;
 | 
						|
 | 
						|
  // Maximum representable value that's not infinity.
 | 
						|
  const RawType max_;
 | 
						|
 | 
						|
  // Some NaNs.
 | 
						|
  const RawType nan1_;
 | 
						|
  const RawType nan2_;
 | 
						|
};
 | 
						|
 | 
						|
// Tests floating-point matchers with fixed epsilons.
 | 
						|
template <typename RawType>
 | 
						|
class FloatingPointNearTest : public FloatingPointTest<RawType> {
 | 
						|
 protected:
 | 
						|
  typedef FloatingPointTest<RawType> ParentType;
 | 
						|
 | 
						|
  // A battery of tests for FloatingEqMatcher::Matches with a fixed epsilon.
 | 
						|
  // matcher_maker is a pointer to a function which creates a FloatingEqMatcher.
 | 
						|
  void TestNearMatches(
 | 
						|
      testing::internal::FloatingEqMatcher<RawType>
 | 
						|
          (*matcher_maker)(RawType, RawType)) {
 | 
						|
    Matcher<RawType> m1 = matcher_maker(0.0, 0.0);
 | 
						|
    EXPECT_TRUE(m1.Matches(0.0));
 | 
						|
    EXPECT_TRUE(m1.Matches(-0.0));
 | 
						|
    EXPECT_FALSE(m1.Matches(ParentType::close_to_positive_zero_));
 | 
						|
    EXPECT_FALSE(m1.Matches(ParentType::close_to_negative_zero_));
 | 
						|
    EXPECT_FALSE(m1.Matches(1.0));
 | 
						|
 | 
						|
    Matcher<RawType> m2 = matcher_maker(0.0, 1.0);
 | 
						|
    EXPECT_TRUE(m2.Matches(0.0));
 | 
						|
    EXPECT_TRUE(m2.Matches(-0.0));
 | 
						|
    EXPECT_TRUE(m2.Matches(1.0));
 | 
						|
    EXPECT_TRUE(m2.Matches(-1.0));
 | 
						|
    EXPECT_FALSE(m2.Matches(ParentType::close_to_one_));
 | 
						|
    EXPECT_FALSE(m2.Matches(-ParentType::close_to_one_));
 | 
						|
 | 
						|
    // Check that inf matches inf, regardless of the of the specified max
 | 
						|
    // absolute error.
 | 
						|
    Matcher<RawType> m3 = matcher_maker(ParentType::infinity_, 0.0);
 | 
						|
    EXPECT_TRUE(m3.Matches(ParentType::infinity_));
 | 
						|
    EXPECT_FALSE(m3.Matches(ParentType::close_to_infinity_));
 | 
						|
    EXPECT_FALSE(m3.Matches(-ParentType::infinity_));
 | 
						|
 | 
						|
    Matcher<RawType> m4 = matcher_maker(-ParentType::infinity_, 0.0);
 | 
						|
    EXPECT_TRUE(m4.Matches(-ParentType::infinity_));
 | 
						|
    EXPECT_FALSE(m4.Matches(-ParentType::close_to_infinity_));
 | 
						|
    EXPECT_FALSE(m4.Matches(ParentType::infinity_));
 | 
						|
 | 
						|
    // Test various overflow scenarios.
 | 
						|
    Matcher<RawType> m5 = matcher_maker(ParentType::max_, ParentType::max_);
 | 
						|
    EXPECT_TRUE(m5.Matches(ParentType::max_));
 | 
						|
    EXPECT_FALSE(m5.Matches(-ParentType::max_));
 | 
						|
 | 
						|
    Matcher<RawType> m6 = matcher_maker(-ParentType::max_, ParentType::max_);
 | 
						|
    EXPECT_FALSE(m6.Matches(ParentType::max_));
 | 
						|
    EXPECT_TRUE(m6.Matches(-ParentType::max_));
 | 
						|
 | 
						|
    Matcher<RawType> m7 = matcher_maker(ParentType::max_, 0);
 | 
						|
    EXPECT_TRUE(m7.Matches(ParentType::max_));
 | 
						|
    EXPECT_FALSE(m7.Matches(-ParentType::max_));
 | 
						|
 | 
						|
    Matcher<RawType> m8 = matcher_maker(-ParentType::max_, 0);
 | 
						|
    EXPECT_FALSE(m8.Matches(ParentType::max_));
 | 
						|
    EXPECT_TRUE(m8.Matches(-ParentType::max_));
 | 
						|
 | 
						|
    // The difference between max() and -max() normally overflows to infinity,
 | 
						|
    // but it should still match if the max_abs_error is also infinity.
 | 
						|
    Matcher<RawType> m9 = matcher_maker(
 | 
						|
        ParentType::max_, ParentType::infinity_);
 | 
						|
    EXPECT_TRUE(m8.Matches(-ParentType::max_));
 | 
						|
 | 
						|
    // matcher_maker can produce a Matcher<const RawType&>, which is needed in
 | 
						|
    // some cases.
 | 
						|
    Matcher<const RawType&> m10 = matcher_maker(0.0, 1.0);
 | 
						|
    EXPECT_TRUE(m10.Matches(-0.0));
 | 
						|
    EXPECT_TRUE(m10.Matches(ParentType::close_to_positive_zero_));
 | 
						|
    EXPECT_FALSE(m10.Matches(ParentType::close_to_one_));
 | 
						|
 | 
						|
    // matcher_maker can produce a Matcher<RawType&>, which is needed in some
 | 
						|
    // cases.
 | 
						|
    Matcher<RawType&> m11 = matcher_maker(0.0, 1.0);
 | 
						|
    RawType x = 0.0;
 | 
						|
    EXPECT_TRUE(m11.Matches(x));
 | 
						|
    x = 1.0f;
 | 
						|
    EXPECT_TRUE(m11.Matches(x));
 | 
						|
    x = -1.0f;
 | 
						|
    EXPECT_TRUE(m11.Matches(x));
 | 
						|
    x = 1.1f;
 | 
						|
    EXPECT_FALSE(m11.Matches(x));
 | 
						|
    x = -1.1f;
 | 
						|
    EXPECT_FALSE(m11.Matches(x));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Instantiate FloatingPointTest for testing floats.
 | 
						|
typedef FloatingPointTest<float> FloatTest;
 | 
						|
 | 
						|
TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) {
 | 
						|
  TestMatches(&FloatEq);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) {
 | 
						|
  TestMatches(&NanSensitiveFloatEq);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(FloatTest, FloatEqCannotMatchNaN) {
 | 
						|
  // FloatEq never matches NaN.
 | 
						|
  Matcher<float> m = FloatEq(nan1_);
 | 
						|
  EXPECT_FALSE(m.Matches(nan1_));
 | 
						|
  EXPECT_FALSE(m.Matches(nan2_));
 | 
						|
  EXPECT_FALSE(m.Matches(1.0));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) {
 | 
						|
  // NanSensitiveFloatEq will match NaN.
 | 
						|
  Matcher<float> m = NanSensitiveFloatEq(nan1_);
 | 
						|
  EXPECT_TRUE(m.Matches(nan1_));
 | 
						|
  EXPECT_TRUE(m.Matches(nan2_));
 | 
						|
  EXPECT_FALSE(m.Matches(1.0));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(FloatTest, FloatEqCanDescribeSelf) {
 | 
						|
  Matcher<float> m1 = FloatEq(2.0f);
 | 
						|
  EXPECT_EQ("is approximately 2", Describe(m1));
 | 
						|
  EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
 | 
						|
 | 
						|
  Matcher<float> m2 = FloatEq(0.5f);
 | 
						|
  EXPECT_EQ("is approximately 0.5", Describe(m2));
 | 
						|
  EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
 | 
						|
 | 
						|
  Matcher<float> m3 = FloatEq(nan1_);
 | 
						|
  EXPECT_EQ("never matches", Describe(m3));
 | 
						|
  EXPECT_EQ("is anything", DescribeNegation(m3));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) {
 | 
						|
  Matcher<float> m1 = NanSensitiveFloatEq(2.0f);
 | 
						|
  EXPECT_EQ("is approximately 2", Describe(m1));
 | 
						|
  EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
 | 
						|
 | 
						|
  Matcher<float> m2 = NanSensitiveFloatEq(0.5f);
 | 
						|
  EXPECT_EQ("is approximately 0.5", Describe(m2));
 | 
						|
  EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
 | 
						|
 | 
						|
  Matcher<float> m3 = NanSensitiveFloatEq(nan1_);
 | 
						|
  EXPECT_EQ("is NaN", Describe(m3));
 | 
						|
  EXPECT_EQ("isn't NaN", DescribeNegation(m3));
 | 
						|
}
 | 
						|
 | 
						|
// Instantiate FloatingPointTest for testing floats with a user-specified
 | 
						|
// max absolute error.
 | 
						|
typedef FloatingPointNearTest<float> FloatNearTest;
 | 
						|
 | 
						|
TEST_F(FloatNearTest, FloatNearMatches) {
 | 
						|
  TestNearMatches(&FloatNear);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(FloatNearTest, NanSensitiveFloatNearApproximatelyMatchesFloats) {
 | 
						|
  TestNearMatches(&NanSensitiveFloatNear);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(FloatNearTest, FloatNearCanDescribeSelf) {
 | 
						|
  Matcher<float> m1 = FloatNear(2.0f, 0.5f);
 | 
						|
  EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
 | 
						|
 | 
						|
  Matcher<float> m2 = FloatNear(0.5f, 0.5f);
 | 
						|
  EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
 | 
						|
 | 
						|
  Matcher<float> m3 = FloatNear(nan1_, 0.0);
 | 
						|
  EXPECT_EQ("never matches", Describe(m3));
 | 
						|
  EXPECT_EQ("is anything", DescribeNegation(m3));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(FloatNearTest, NanSensitiveFloatNearCanDescribeSelf) {
 | 
						|
  Matcher<float> m1 = NanSensitiveFloatNear(2.0f, 0.5f);
 | 
						|
  EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
 | 
						|
 | 
						|
  Matcher<float> m2 = NanSensitiveFloatNear(0.5f, 0.5f);
 | 
						|
  EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
 | 
						|
 | 
						|
  Matcher<float> m3 = NanSensitiveFloatNear(nan1_, 0.1f);
 | 
						|
  EXPECT_EQ("is NaN", Describe(m3));
 | 
						|
  EXPECT_EQ("isn't NaN", DescribeNegation(m3));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(FloatNearTest, FloatNearCannotMatchNaN) {
 | 
						|
  // FloatNear never matches NaN.
 | 
						|
  Matcher<float> m = FloatNear(ParentType::nan1_, 0.1f);
 | 
						|
  EXPECT_FALSE(m.Matches(nan1_));
 | 
						|
  EXPECT_FALSE(m.Matches(nan2_));
 | 
						|
  EXPECT_FALSE(m.Matches(1.0));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(FloatNearTest, NanSensitiveFloatNearCanMatchNaN) {
 | 
						|
  // NanSensitiveFloatNear will match NaN.
 | 
						|
  Matcher<float> m = NanSensitiveFloatNear(nan1_, 0.1f);
 | 
						|
  EXPECT_TRUE(m.Matches(nan1_));
 | 
						|
  EXPECT_TRUE(m.Matches(nan2_));
 | 
						|
  EXPECT_FALSE(m.Matches(1.0));
 | 
						|
}
 | 
						|
 | 
						|
// Instantiate FloatingPointTest for testing doubles.
 | 
						|
typedef FloatingPointTest<double> DoubleTest;
 | 
						|
 | 
						|
TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) {
 | 
						|
  TestMatches(&DoubleEq);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) {
 | 
						|
  TestMatches(&NanSensitiveDoubleEq);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleTest, DoubleEqCannotMatchNaN) {
 | 
						|
  // DoubleEq never matches NaN.
 | 
						|
  Matcher<double> m = DoubleEq(nan1_);
 | 
						|
  EXPECT_FALSE(m.Matches(nan1_));
 | 
						|
  EXPECT_FALSE(m.Matches(nan2_));
 | 
						|
  EXPECT_FALSE(m.Matches(1.0));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) {
 | 
						|
  // NanSensitiveDoubleEq will match NaN.
 | 
						|
  Matcher<double> m = NanSensitiveDoubleEq(nan1_);
 | 
						|
  EXPECT_TRUE(m.Matches(nan1_));
 | 
						|
  EXPECT_TRUE(m.Matches(nan2_));
 | 
						|
  EXPECT_FALSE(m.Matches(1.0));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleTest, DoubleEqCanDescribeSelf) {
 | 
						|
  Matcher<double> m1 = DoubleEq(2.0);
 | 
						|
  EXPECT_EQ("is approximately 2", Describe(m1));
 | 
						|
  EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
 | 
						|
 | 
						|
  Matcher<double> m2 = DoubleEq(0.5);
 | 
						|
  EXPECT_EQ("is approximately 0.5", Describe(m2));
 | 
						|
  EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
 | 
						|
 | 
						|
  Matcher<double> m3 = DoubleEq(nan1_);
 | 
						|
  EXPECT_EQ("never matches", Describe(m3));
 | 
						|
  EXPECT_EQ("is anything", DescribeNegation(m3));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) {
 | 
						|
  Matcher<double> m1 = NanSensitiveDoubleEq(2.0);
 | 
						|
  EXPECT_EQ("is approximately 2", Describe(m1));
 | 
						|
  EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
 | 
						|
 | 
						|
  Matcher<double> m2 = NanSensitiveDoubleEq(0.5);
 | 
						|
  EXPECT_EQ("is approximately 0.5", Describe(m2));
 | 
						|
  EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
 | 
						|
 | 
						|
  Matcher<double> m3 = NanSensitiveDoubleEq(nan1_);
 | 
						|
  EXPECT_EQ("is NaN", Describe(m3));
 | 
						|
  EXPECT_EQ("isn't NaN", DescribeNegation(m3));
 | 
						|
}
 | 
						|
 | 
						|
// Instantiate FloatingPointTest for testing floats with a user-specified
 | 
						|
// max absolute error.
 | 
						|
typedef FloatingPointNearTest<double> DoubleNearTest;
 | 
						|
 | 
						|
TEST_F(DoubleNearTest, DoubleNearMatches) {
 | 
						|
  TestNearMatches(&DoubleNear);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleNearTest, NanSensitiveDoubleNearApproximatelyMatchesDoubles) {
 | 
						|
  TestNearMatches(&NanSensitiveDoubleNear);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleNearTest, DoubleNearCanDescribeSelf) {
 | 
						|
  Matcher<double> m1 = DoubleNear(2.0, 0.5);
 | 
						|
  EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
 | 
						|
 | 
						|
  Matcher<double> m2 = DoubleNear(0.5, 0.5);
 | 
						|
  EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
 | 
						|
 | 
						|
  Matcher<double> m3 = DoubleNear(nan1_, 0.0);
 | 
						|
  EXPECT_EQ("never matches", Describe(m3));
 | 
						|
  EXPECT_EQ("is anything", DescribeNegation(m3));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleNearTest, ExplainsResultWhenMatchFails) {
 | 
						|
  EXPECT_EQ("", Explain(DoubleNear(2.0, 0.1), 2.05));
 | 
						|
  EXPECT_EQ("which is 0.2 from 2", Explain(DoubleNear(2.0, 0.1), 2.2));
 | 
						|
  EXPECT_EQ("which is -0.3 from 2", Explain(DoubleNear(2.0, 0.1), 1.7));
 | 
						|
 | 
						|
  const std::string explanation =
 | 
						|
      Explain(DoubleNear(2.1, 1e-10), 2.1 + 1.2e-10);
 | 
						|
  // Different C++ implementations may print floating-point numbers
 | 
						|
  // slightly differently.
 | 
						|
  EXPECT_TRUE(explanation == "which is 1.2e-10 from 2.1" ||  // GCC
 | 
						|
              explanation == "which is 1.2e-010 from 2.1")   // MSVC
 | 
						|
      << " where explanation is \"" << explanation << "\".";
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanDescribeSelf) {
 | 
						|
  Matcher<double> m1 = NanSensitiveDoubleNear(2.0, 0.5);
 | 
						|
  EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
 | 
						|
 | 
						|
  Matcher<double> m2 = NanSensitiveDoubleNear(0.5, 0.5);
 | 
						|
  EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
 | 
						|
 | 
						|
  Matcher<double> m3 = NanSensitiveDoubleNear(nan1_, 0.1);
 | 
						|
  EXPECT_EQ("is NaN", Describe(m3));
 | 
						|
  EXPECT_EQ("isn't NaN", DescribeNegation(m3));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleNearTest, DoubleNearCannotMatchNaN) {
 | 
						|
  // DoubleNear never matches NaN.
 | 
						|
  Matcher<double> m = DoubleNear(ParentType::nan1_, 0.1);
 | 
						|
  EXPECT_FALSE(m.Matches(nan1_));
 | 
						|
  EXPECT_FALSE(m.Matches(nan2_));
 | 
						|
  EXPECT_FALSE(m.Matches(1.0));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanMatchNaN) {
 | 
						|
  // NanSensitiveDoubleNear will match NaN.
 | 
						|
  Matcher<double> m = NanSensitiveDoubleNear(nan1_, 0.1);
 | 
						|
  EXPECT_TRUE(m.Matches(nan1_));
 | 
						|
  EXPECT_TRUE(m.Matches(nan2_));
 | 
						|
  EXPECT_FALSE(m.Matches(1.0));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointeeTest, RawPointer) {
 | 
						|
  const Matcher<int*> m = Pointee(Ge(0));
 | 
						|
 | 
						|
  int n = 1;
 | 
						|
  EXPECT_TRUE(m.Matches(&n));
 | 
						|
  n = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(&n));
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointeeTest, RawPointerToConst) {
 | 
						|
  const Matcher<const double*> m = Pointee(Ge(0));
 | 
						|
 | 
						|
  double x = 1;
 | 
						|
  EXPECT_TRUE(m.Matches(&x));
 | 
						|
  x = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(&x));
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointeeTest, ReferenceToConstRawPointer) {
 | 
						|
  const Matcher<int* const &> m = Pointee(Ge(0));
 | 
						|
 | 
						|
  int n = 1;
 | 
						|
  EXPECT_TRUE(m.Matches(&n));
 | 
						|
  n = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(&n));
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointeeTest, ReferenceToNonConstRawPointer) {
 | 
						|
  const Matcher<double* &> m = Pointee(Ge(0));
 | 
						|
 | 
						|
  double x = 1.0;
 | 
						|
  double* p = &x;
 | 
						|
  EXPECT_TRUE(m.Matches(p));
 | 
						|
  x = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(p));
 | 
						|
  p = NULL;
 | 
						|
  EXPECT_FALSE(m.Matches(p));
 | 
						|
}
 | 
						|
 | 
						|
MATCHER_P(FieldIIs, inner_matcher, "") {
 | 
						|
  return ExplainMatchResult(inner_matcher, arg.i, result_listener);
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenDynamicCastToTest, SameType) {
 | 
						|
  Derived derived;
 | 
						|
  derived.i = 4;
 | 
						|
 | 
						|
  // Right type. A pointer is passed down.
 | 
						|
  Base* as_base_ptr = &derived;
 | 
						|
  EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Not(IsNull())));
 | 
						|
  EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(4))));
 | 
						|
  EXPECT_THAT(as_base_ptr,
 | 
						|
              Not(WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(5)))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenDynamicCastToTest, WrongTypes) {
 | 
						|
  Base base;
 | 
						|
  Derived derived;
 | 
						|
  OtherDerived other_derived;
 | 
						|
 | 
						|
  // Wrong types. NULL is passed.
 | 
						|
  EXPECT_THAT(&base, Not(WhenDynamicCastTo<Derived*>(Pointee(_))));
 | 
						|
  EXPECT_THAT(&base, WhenDynamicCastTo<Derived*>(IsNull()));
 | 
						|
  Base* as_base_ptr = &derived;
 | 
						|
  EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<OtherDerived*>(Pointee(_))));
 | 
						|
  EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<OtherDerived*>(IsNull()));
 | 
						|
  as_base_ptr = &other_derived;
 | 
						|
  EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<Derived*>(Pointee(_))));
 | 
						|
  EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull()));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenDynamicCastToTest, AlreadyNull) {
 | 
						|
  // Already NULL.
 | 
						|
  Base* as_base_ptr = NULL;
 | 
						|
  EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull()));
 | 
						|
}
 | 
						|
 | 
						|
struct AmbiguousCastTypes {
 | 
						|
  class VirtualDerived : public virtual Base {};
 | 
						|
  class DerivedSub1 : public VirtualDerived {};
 | 
						|
  class DerivedSub2 : public VirtualDerived {};
 | 
						|
  class ManyDerivedInHierarchy : public DerivedSub1, public DerivedSub2 {};
 | 
						|
};
 | 
						|
 | 
						|
TEST(WhenDynamicCastToTest, AmbiguousCast) {
 | 
						|
  AmbiguousCastTypes::DerivedSub1 sub1;
 | 
						|
  AmbiguousCastTypes::ManyDerivedInHierarchy many_derived;
 | 
						|
  // Multiply derived from Base. dynamic_cast<> returns NULL.
 | 
						|
  Base* as_base_ptr =
 | 
						|
      static_cast<AmbiguousCastTypes::DerivedSub1*>(&many_derived);
 | 
						|
  EXPECT_THAT(as_base_ptr,
 | 
						|
              WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(IsNull()));
 | 
						|
  as_base_ptr = &sub1;
 | 
						|
  EXPECT_THAT(
 | 
						|
      as_base_ptr,
 | 
						|
      WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(Not(IsNull())));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenDynamicCastToTest, Describe) {
 | 
						|
  Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_));
 | 
						|
#if GTEST_HAS_RTTI
 | 
						|
  const std::string prefix =
 | 
						|
      "when dynamic_cast to " + internal::GetTypeName<Derived*>() + ", ";
 | 
						|
#else  // GTEST_HAS_RTTI
 | 
						|
  const std::string prefix = "when dynamic_cast, ";
 | 
						|
#endif  // GTEST_HAS_RTTI
 | 
						|
  EXPECT_EQ(prefix + "points to a value that is anything", Describe(matcher));
 | 
						|
  EXPECT_EQ(prefix + "does not point to a value that is anything",
 | 
						|
            DescribeNegation(matcher));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenDynamicCastToTest, Explain) {
 | 
						|
  Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_));
 | 
						|
  Base* null = NULL;
 | 
						|
  EXPECT_THAT(Explain(matcher, null), HasSubstr("NULL"));
 | 
						|
  Derived derived;
 | 
						|
  EXPECT_TRUE(matcher.Matches(&derived));
 | 
						|
  EXPECT_THAT(Explain(matcher, &derived), HasSubstr("which points to "));
 | 
						|
 | 
						|
  // With references, the matcher itself can fail. Test for that one.
 | 
						|
  Matcher<const Base&> ref_matcher = WhenDynamicCastTo<const OtherDerived&>(_);
 | 
						|
  EXPECT_THAT(Explain(ref_matcher, derived),
 | 
						|
              HasSubstr("which cannot be dynamic_cast"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenDynamicCastToTest, GoodReference) {
 | 
						|
  Derived derived;
 | 
						|
  derived.i = 4;
 | 
						|
  Base& as_base_ref = derived;
 | 
						|
  EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(FieldIIs(4)));
 | 
						|
  EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(Not(FieldIIs(5))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenDynamicCastToTest, BadReference) {
 | 
						|
  Derived derived;
 | 
						|
  Base& as_base_ref = derived;
 | 
						|
  EXPECT_THAT(as_base_ref, Not(WhenDynamicCastTo<const OtherDerived&>(_)));
 | 
						|
}
 | 
						|
 | 
						|
// Minimal const-propagating pointer.
 | 
						|
template <typename T>
 | 
						|
class ConstPropagatingPtr {
 | 
						|
 public:
 | 
						|
  typedef T element_type;
 | 
						|
 | 
						|
  ConstPropagatingPtr() : val_() {}
 | 
						|
  explicit ConstPropagatingPtr(T* t) : val_(t) {}
 | 
						|
  ConstPropagatingPtr(const ConstPropagatingPtr& other) : val_(other.val_) {}
 | 
						|
 | 
						|
  T* get() { return val_; }
 | 
						|
  T& operator*() { return *val_; }
 | 
						|
  // Most smart pointers return non-const T* and T& from the next methods.
 | 
						|
  const T* get() const { return val_; }
 | 
						|
  const T& operator*() const { return *val_; }
 | 
						|
 | 
						|
 private:
 | 
						|
  T* val_;
 | 
						|
};
 | 
						|
 | 
						|
TEST(PointeeTest, WorksWithConstPropagatingPointers) {
 | 
						|
  const Matcher< ConstPropagatingPtr<int> > m = Pointee(Lt(5));
 | 
						|
  int three = 3;
 | 
						|
  const ConstPropagatingPtr<int> co(&three);
 | 
						|
  ConstPropagatingPtr<int> o(&three);
 | 
						|
  EXPECT_TRUE(m.Matches(o));
 | 
						|
  EXPECT_TRUE(m.Matches(co));
 | 
						|
  *o = 6;
 | 
						|
  EXPECT_FALSE(m.Matches(o));
 | 
						|
  EXPECT_FALSE(m.Matches(ConstPropagatingPtr<int>()));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointeeTest, NeverMatchesNull) {
 | 
						|
  const Matcher<const char*> m = Pointee(_);
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that we can write Pointee(value) instead of Pointee(Eq(value)).
 | 
						|
TEST(PointeeTest, MatchesAgainstAValue) {
 | 
						|
  const Matcher<int*> m = Pointee(5);
 | 
						|
 | 
						|
  int n = 5;
 | 
						|
  EXPECT_TRUE(m.Matches(&n));
 | 
						|
  n = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(&n));
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointeeTest, CanDescribeSelf) {
 | 
						|
  const Matcher<int*> m = Pointee(Gt(3));
 | 
						|
  EXPECT_EQ("points to a value that is > 3", Describe(m));
 | 
						|
  EXPECT_EQ("does not point to a value that is > 3",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointeeTest, CanExplainMatchResult) {
 | 
						|
  const Matcher<const std::string*> m = Pointee(StartsWith("Hi"));
 | 
						|
 | 
						|
  EXPECT_EQ("", Explain(m, static_cast<const std::string*>(NULL)));
 | 
						|
 | 
						|
  const Matcher<long*> m2 = Pointee(GreaterThan(1));  // NOLINT
 | 
						|
  long n = 3;  // NOLINT
 | 
						|
  EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1",
 | 
						|
            Explain(m2, &n));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointeeTest, AlwaysExplainsPointee) {
 | 
						|
  const Matcher<int*> m = Pointee(0);
 | 
						|
  int n = 42;
 | 
						|
  EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n));
 | 
						|
}
 | 
						|
 | 
						|
// An uncopyable class.
 | 
						|
class Uncopyable {
 | 
						|
 public:
 | 
						|
  Uncopyable() : value_(-1) {}
 | 
						|
  explicit Uncopyable(int a_value) : value_(a_value) {}
 | 
						|
 | 
						|
  int value() const { return value_; }
 | 
						|
  void set_value(int i) { value_ = i; }
 | 
						|
 | 
						|
 private:
 | 
						|
  int value_;
 | 
						|
  GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable);
 | 
						|
};
 | 
						|
 | 
						|
// Returns true iff x.value() is positive.
 | 
						|
bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; }
 | 
						|
 | 
						|
MATCHER_P(UncopyableIs, inner_matcher, "") {
 | 
						|
  return ExplainMatchResult(inner_matcher, arg.value(), result_listener);
 | 
						|
}
 | 
						|
 | 
						|
// A user-defined struct for testing Field().
 | 
						|
struct AStruct {
 | 
						|
  AStruct() : x(0), y(1.0), z(5), p(NULL) {}
 | 
						|
  AStruct(const AStruct& rhs)
 | 
						|
      : x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {}
 | 
						|
 | 
						|
  int x;           // A non-const field.
 | 
						|
  const double y;  // A const field.
 | 
						|
  Uncopyable z;    // An uncopyable field.
 | 
						|
  const char* p;   // A pointer field.
 | 
						|
 | 
						|
 private:
 | 
						|
  GTEST_DISALLOW_ASSIGN_(AStruct);
 | 
						|
};
 | 
						|
 | 
						|
// A derived struct for testing Field().
 | 
						|
struct DerivedStruct : public AStruct {
 | 
						|
  char ch;
 | 
						|
 | 
						|
 private:
 | 
						|
  GTEST_DISALLOW_ASSIGN_(DerivedStruct);
 | 
						|
};
 | 
						|
 | 
						|
// Tests that Field(&Foo::field, ...) works when field is non-const.
 | 
						|
TEST(FieldTest, WorksForNonConstField) {
 | 
						|
  Matcher<AStruct> m = Field(&AStruct::x, Ge(0));
 | 
						|
  Matcher<AStruct> m_with_name = Field("x", &AStruct::x, Ge(0));
 | 
						|
 | 
						|
  AStruct a;
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  EXPECT_TRUE(m_with_name.Matches(a));
 | 
						|
  a.x = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
  EXPECT_FALSE(m_with_name.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field(&Foo::field, ...) works when field is const.
 | 
						|
TEST(FieldTest, WorksForConstField) {
 | 
						|
  AStruct a;
 | 
						|
 | 
						|
  Matcher<AStruct> m = Field(&AStruct::y, Ge(0.0));
 | 
						|
  Matcher<AStruct> m_with_name = Field("y", &AStruct::y, Ge(0.0));
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  EXPECT_TRUE(m_with_name.Matches(a));
 | 
						|
  m = Field(&AStruct::y, Le(0.0));
 | 
						|
  m_with_name = Field("y", &AStruct::y, Le(0.0));
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
  EXPECT_FALSE(m_with_name.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field(&Foo::field, ...) works when field is not copyable.
 | 
						|
TEST(FieldTest, WorksForUncopyableField) {
 | 
						|
  AStruct a;
 | 
						|
 | 
						|
  Matcher<AStruct> m = Field(&AStruct::z, Truly(ValueIsPositive));
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  m = Field(&AStruct::z, Not(Truly(ValueIsPositive)));
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field(&Foo::field, ...) works when field is a pointer.
 | 
						|
TEST(FieldTest, WorksForPointerField) {
 | 
						|
  // Matching against NULL.
 | 
						|
  Matcher<AStruct> m = Field(&AStruct::p, static_cast<const char*>(NULL));
 | 
						|
  AStruct a;
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  a.p = "hi";
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
 | 
						|
  // Matching a pointer that is not NULL.
 | 
						|
  m = Field(&AStruct::p, StartsWith("hi"));
 | 
						|
  a.p = "hill";
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  a.p = "hole";
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field() works when the object is passed by reference.
 | 
						|
TEST(FieldTest, WorksForByRefArgument) {
 | 
						|
  Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
 | 
						|
 | 
						|
  AStruct a;
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  a.x = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field(&Foo::field, ...) works when the argument's type
 | 
						|
// is a sub-type of Foo.
 | 
						|
TEST(FieldTest, WorksForArgumentOfSubType) {
 | 
						|
  // Note that the matcher expects DerivedStruct but we say AStruct
 | 
						|
  // inside Field().
 | 
						|
  Matcher<const DerivedStruct&> m = Field(&AStruct::x, Ge(0));
 | 
						|
 | 
						|
  DerivedStruct d;
 | 
						|
  EXPECT_TRUE(m.Matches(d));
 | 
						|
  d.x = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(d));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field(&Foo::field, m) works when field's type and m's
 | 
						|
// argument type are compatible but not the same.
 | 
						|
TEST(FieldTest, WorksForCompatibleMatcherType) {
 | 
						|
  // The field is an int, but the inner matcher expects a signed char.
 | 
						|
  Matcher<const AStruct&> m = Field(&AStruct::x,
 | 
						|
                                    Matcher<signed char>(Ge(0)));
 | 
						|
 | 
						|
  AStruct a;
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  a.x = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field() can describe itself.
 | 
						|
TEST(FieldTest, CanDescribeSelf) {
 | 
						|
  Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
 | 
						|
 | 
						|
  EXPECT_EQ("is an object whose given field is >= 0", Describe(m));
 | 
						|
  EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(FieldTest, CanDescribeSelfWithFieldName) {
 | 
						|
  Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0));
 | 
						|
 | 
						|
  EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m));
 | 
						|
  EXPECT_EQ("is an object whose field `field_name` isn't >= 0",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field() can explain the match result.
 | 
						|
TEST(FieldTest, CanExplainMatchResult) {
 | 
						|
  Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
 | 
						|
 | 
						|
  AStruct a;
 | 
						|
  a.x = 1;
 | 
						|
  EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a));
 | 
						|
 | 
						|
  m = Field(&AStruct::x, GreaterThan(0));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "whose given field is 1" + OfType("int") + ", which is 1 more than 0",
 | 
						|
      Explain(m, a));
 | 
						|
}
 | 
						|
 | 
						|
TEST(FieldTest, CanExplainMatchResultWithFieldName) {
 | 
						|
  Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0));
 | 
						|
 | 
						|
  AStruct a;
 | 
						|
  a.x = 1;
 | 
						|
  EXPECT_EQ("whose field `field_name` is 1" + OfType("int"), Explain(m, a));
 | 
						|
 | 
						|
  m = Field("field_name", &AStruct::x, GreaterThan(0));
 | 
						|
  EXPECT_EQ("whose field `field_name` is 1" + OfType("int") +
 | 
						|
                ", which is 1 more than 0",
 | 
						|
            Explain(m, a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field() works when the argument is a pointer to const.
 | 
						|
TEST(FieldForPointerTest, WorksForPointerToConst) {
 | 
						|
  Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
 | 
						|
 | 
						|
  AStruct a;
 | 
						|
  EXPECT_TRUE(m.Matches(&a));
 | 
						|
  a.x = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(&a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field() works when the argument is a pointer to non-const.
 | 
						|
TEST(FieldForPointerTest, WorksForPointerToNonConst) {
 | 
						|
  Matcher<AStruct*> m = Field(&AStruct::x, Ge(0));
 | 
						|
 | 
						|
  AStruct a;
 | 
						|
  EXPECT_TRUE(m.Matches(&a));
 | 
						|
  a.x = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(&a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field() works when the argument is a reference to a const pointer.
 | 
						|
TEST(FieldForPointerTest, WorksForReferenceToConstPointer) {
 | 
						|
  Matcher<AStruct* const&> m = Field(&AStruct::x, Ge(0));
 | 
						|
 | 
						|
  AStruct a;
 | 
						|
  EXPECT_TRUE(m.Matches(&a));
 | 
						|
  a.x = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(&a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field() does not match the NULL pointer.
 | 
						|
TEST(FieldForPointerTest, DoesNotMatchNull) {
 | 
						|
  Matcher<const AStruct*> m = Field(&AStruct::x, _);
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field(&Foo::field, ...) works when the argument's type
 | 
						|
// is a sub-type of const Foo*.
 | 
						|
TEST(FieldForPointerTest, WorksForArgumentOfSubType) {
 | 
						|
  // Note that the matcher expects DerivedStruct but we say AStruct
 | 
						|
  // inside Field().
 | 
						|
  Matcher<DerivedStruct*> m = Field(&AStruct::x, Ge(0));
 | 
						|
 | 
						|
  DerivedStruct d;
 | 
						|
  EXPECT_TRUE(m.Matches(&d));
 | 
						|
  d.x = -1;
 | 
						|
  EXPECT_FALSE(m.Matches(&d));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field() can describe itself when used to match a pointer.
 | 
						|
TEST(FieldForPointerTest, CanDescribeSelf) {
 | 
						|
  Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
 | 
						|
 | 
						|
  EXPECT_EQ("is an object whose given field is >= 0", Describe(m));
 | 
						|
  EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(FieldForPointerTest, CanDescribeSelfWithFieldName) {
 | 
						|
  Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0));
 | 
						|
 | 
						|
  EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m));
 | 
						|
  EXPECT_EQ("is an object whose field `field_name` isn't >= 0",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Field() can explain the result of matching a pointer.
 | 
						|
TEST(FieldForPointerTest, CanExplainMatchResult) {
 | 
						|
  Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
 | 
						|
 | 
						|
  AStruct a;
 | 
						|
  a.x = 1;
 | 
						|
  EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(NULL)));
 | 
						|
  EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"),
 | 
						|
            Explain(m, &a));
 | 
						|
 | 
						|
  m = Field(&AStruct::x, GreaterThan(0));
 | 
						|
  EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") +
 | 
						|
            ", which is 1 more than 0", Explain(m, &a));
 | 
						|
}
 | 
						|
 | 
						|
TEST(FieldForPointerTest, CanExplainMatchResultWithFieldName) {
 | 
						|
  Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0));
 | 
						|
 | 
						|
  AStruct a;
 | 
						|
  a.x = 1;
 | 
						|
  EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(NULL)));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "which points to an object whose field `field_name` is 1" + OfType("int"),
 | 
						|
      Explain(m, &a));
 | 
						|
 | 
						|
  m = Field("field_name", &AStruct::x, GreaterThan(0));
 | 
						|
  EXPECT_EQ("which points to an object whose field `field_name` is 1" +
 | 
						|
                OfType("int") + ", which is 1 more than 0",
 | 
						|
            Explain(m, &a));
 | 
						|
}
 | 
						|
 | 
						|
// A user-defined class for testing Property().
 | 
						|
class AClass {
 | 
						|
 public:
 | 
						|
  AClass() : n_(0) {}
 | 
						|
 | 
						|
  // A getter that returns a non-reference.
 | 
						|
  int n() const { return n_; }
 | 
						|
 | 
						|
  void set_n(int new_n) { n_ = new_n; }
 | 
						|
 | 
						|
  // A getter that returns a reference to const.
 | 
						|
  const std::string& s() const { return s_; }
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
  const std::string& s_ref() const & { return s_; }
 | 
						|
#endif
 | 
						|
 | 
						|
  void set_s(const std::string& new_s) { s_ = new_s; }
 | 
						|
 | 
						|
  // A getter that returns a reference to non-const.
 | 
						|
  double& x() const { return x_; }
 | 
						|
 | 
						|
 private:
 | 
						|
  int n_;
 | 
						|
  std::string s_;
 | 
						|
 | 
						|
  static double x_;
 | 
						|
};
 | 
						|
 | 
						|
double AClass::x_ = 0.0;
 | 
						|
 | 
						|
// A derived class for testing Property().
 | 
						|
class DerivedClass : public AClass {
 | 
						|
 public:
 | 
						|
  int k() const { return k_; }
 | 
						|
 private:
 | 
						|
  int k_;
 | 
						|
};
 | 
						|
 | 
						|
// Tests that Property(&Foo::property, ...) works when property()
 | 
						|
// returns a non-reference.
 | 
						|
TEST(PropertyTest, WorksForNonReferenceProperty) {
 | 
						|
  Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
 | 
						|
  Matcher<const AClass&> m_with_name = Property("n", &AClass::n, Ge(0));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_n(1);
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  EXPECT_TRUE(m_with_name.Matches(a));
 | 
						|
 | 
						|
  a.set_n(-1);
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
  EXPECT_FALSE(m_with_name.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property(&Foo::property, ...) works when property()
 | 
						|
// returns a reference to const.
 | 
						|
TEST(PropertyTest, WorksForReferenceToConstProperty) {
 | 
						|
  Matcher<const AClass&> m = Property(&AClass::s, StartsWith("hi"));
 | 
						|
  Matcher<const AClass&> m_with_name =
 | 
						|
      Property("s", &AClass::s, StartsWith("hi"));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_s("hill");
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  EXPECT_TRUE(m_with_name.Matches(a));
 | 
						|
 | 
						|
  a.set_s("hole");
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
  EXPECT_FALSE(m_with_name.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
// Tests that Property(&Foo::property, ...) works when property() is
 | 
						|
// ref-qualified.
 | 
						|
TEST(PropertyTest, WorksForRefQualifiedProperty) {
 | 
						|
  Matcher<const AClass&> m = Property(&AClass::s_ref, StartsWith("hi"));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_s("hill");
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
 | 
						|
  a.set_s("hole");
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// Tests that Property(&Foo::property, ...) works when property()
 | 
						|
// returns a reference to non-const.
 | 
						|
TEST(PropertyTest, WorksForReferenceToNonConstProperty) {
 | 
						|
  double x = 0.0;
 | 
						|
  AClass a;
 | 
						|
 | 
						|
  Matcher<const AClass&> m = Property(&AClass::x, Ref(x));
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
 | 
						|
  m = Property(&AClass::x, Not(Ref(x)));
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property(&Foo::property, ...) works when the argument is
 | 
						|
// passed by value.
 | 
						|
TEST(PropertyTest, WorksForByValueArgument) {
 | 
						|
  Matcher<AClass> m = Property(&AClass::s, StartsWith("hi"));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_s("hill");
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
 | 
						|
  a.set_s("hole");
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property(&Foo::property, ...) works when the argument's
 | 
						|
// type is a sub-type of Foo.
 | 
						|
TEST(PropertyTest, WorksForArgumentOfSubType) {
 | 
						|
  // The matcher expects a DerivedClass, but inside the Property() we
 | 
						|
  // say AClass.
 | 
						|
  Matcher<const DerivedClass&> m = Property(&AClass::n, Ge(0));
 | 
						|
 | 
						|
  DerivedClass d;
 | 
						|
  d.set_n(1);
 | 
						|
  EXPECT_TRUE(m.Matches(d));
 | 
						|
 | 
						|
  d.set_n(-1);
 | 
						|
  EXPECT_FALSE(m.Matches(d));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property(&Foo::property, m) works when property()'s type
 | 
						|
// and m's argument type are compatible but different.
 | 
						|
TEST(PropertyTest, WorksForCompatibleMatcherType) {
 | 
						|
  // n() returns an int but the inner matcher expects a signed char.
 | 
						|
  Matcher<const AClass&> m = Property(&AClass::n,
 | 
						|
                                      Matcher<signed char>(Ge(0)));
 | 
						|
 | 
						|
  Matcher<const AClass&> m_with_name =
 | 
						|
      Property("n", &AClass::n, Matcher<signed char>(Ge(0)));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  EXPECT_TRUE(m.Matches(a));
 | 
						|
  EXPECT_TRUE(m_with_name.Matches(a));
 | 
						|
  a.set_n(-1);
 | 
						|
  EXPECT_FALSE(m.Matches(a));
 | 
						|
  EXPECT_FALSE(m_with_name.Matches(a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property() can describe itself.
 | 
						|
TEST(PropertyTest, CanDescribeSelf) {
 | 
						|
  Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
 | 
						|
 | 
						|
  EXPECT_EQ("is an object whose given property is >= 0", Describe(m));
 | 
						|
  EXPECT_EQ("is an object whose given property isn't >= 0",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PropertyTest, CanDescribeSelfWithPropertyName) {
 | 
						|
  Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0));
 | 
						|
 | 
						|
  EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m));
 | 
						|
  EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property() can explain the match result.
 | 
						|
TEST(PropertyTest, CanExplainMatchResult) {
 | 
						|
  Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_n(1);
 | 
						|
  EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a));
 | 
						|
 | 
						|
  m = Property(&AClass::n, GreaterThan(0));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "whose given property is 1" + OfType("int") + ", which is 1 more than 0",
 | 
						|
      Explain(m, a));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PropertyTest, CanExplainMatchResultWithPropertyName) {
 | 
						|
  Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_n(1);
 | 
						|
  EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int"), Explain(m, a));
 | 
						|
 | 
						|
  m = Property("fancy_name", &AClass::n, GreaterThan(0));
 | 
						|
  EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int") +
 | 
						|
                ", which is 1 more than 0",
 | 
						|
            Explain(m, a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property() works when the argument is a pointer to const.
 | 
						|
TEST(PropertyForPointerTest, WorksForPointerToConst) {
 | 
						|
  Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_n(1);
 | 
						|
  EXPECT_TRUE(m.Matches(&a));
 | 
						|
 | 
						|
  a.set_n(-1);
 | 
						|
  EXPECT_FALSE(m.Matches(&a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property() works when the argument is a pointer to non-const.
 | 
						|
TEST(PropertyForPointerTest, WorksForPointerToNonConst) {
 | 
						|
  Matcher<AClass*> m = Property(&AClass::s, StartsWith("hi"));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_s("hill");
 | 
						|
  EXPECT_TRUE(m.Matches(&a));
 | 
						|
 | 
						|
  a.set_s("hole");
 | 
						|
  EXPECT_FALSE(m.Matches(&a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property() works when the argument is a reference to a
 | 
						|
// const pointer.
 | 
						|
TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) {
 | 
						|
  Matcher<AClass* const&> m = Property(&AClass::s, StartsWith("hi"));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_s("hill");
 | 
						|
  EXPECT_TRUE(m.Matches(&a));
 | 
						|
 | 
						|
  a.set_s("hole");
 | 
						|
  EXPECT_FALSE(m.Matches(&a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property() does not match the NULL pointer.
 | 
						|
TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) {
 | 
						|
  Matcher<const AClass*> m = Property(&AClass::x, _);
 | 
						|
  EXPECT_FALSE(m.Matches(NULL));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property(&Foo::property, ...) works when the argument's
 | 
						|
// type is a sub-type of const Foo*.
 | 
						|
TEST(PropertyForPointerTest, WorksForArgumentOfSubType) {
 | 
						|
  // The matcher expects a DerivedClass, but inside the Property() we
 | 
						|
  // say AClass.
 | 
						|
  Matcher<const DerivedClass*> m = Property(&AClass::n, Ge(0));
 | 
						|
 | 
						|
  DerivedClass d;
 | 
						|
  d.set_n(1);
 | 
						|
  EXPECT_TRUE(m.Matches(&d));
 | 
						|
 | 
						|
  d.set_n(-1);
 | 
						|
  EXPECT_FALSE(m.Matches(&d));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property() can describe itself when used to match a pointer.
 | 
						|
TEST(PropertyForPointerTest, CanDescribeSelf) {
 | 
						|
  Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
 | 
						|
 | 
						|
  EXPECT_EQ("is an object whose given property is >= 0", Describe(m));
 | 
						|
  EXPECT_EQ("is an object whose given property isn't >= 0",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PropertyForPointerTest, CanDescribeSelfWithPropertyDescription) {
 | 
						|
  Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0));
 | 
						|
 | 
						|
  EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m));
 | 
						|
  EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that Property() can explain the result of matching a pointer.
 | 
						|
TEST(PropertyForPointerTest, CanExplainMatchResult) {
 | 
						|
  Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_n(1);
 | 
						|
  EXPECT_EQ("", Explain(m, static_cast<const AClass*>(NULL)));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "which points to an object whose given property is 1" + OfType("int"),
 | 
						|
      Explain(m, &a));
 | 
						|
 | 
						|
  m = Property(&AClass::n, GreaterThan(0));
 | 
						|
  EXPECT_EQ("which points to an object whose given property is 1" +
 | 
						|
            OfType("int") + ", which is 1 more than 0",
 | 
						|
            Explain(m, &a));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PropertyForPointerTest, CanExplainMatchResultWithPropertyName) {
 | 
						|
  Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0));
 | 
						|
 | 
						|
  AClass a;
 | 
						|
  a.set_n(1);
 | 
						|
  EXPECT_EQ("", Explain(m, static_cast<const AClass*>(NULL)));
 | 
						|
  EXPECT_EQ("which points to an object whose property `fancy_name` is 1" +
 | 
						|
                OfType("int"),
 | 
						|
            Explain(m, &a));
 | 
						|
 | 
						|
  m = Property("fancy_name", &AClass::n, GreaterThan(0));
 | 
						|
  EXPECT_EQ("which points to an object whose property `fancy_name` is 1" +
 | 
						|
                OfType("int") + ", which is 1 more than 0",
 | 
						|
            Explain(m, &a));
 | 
						|
}
 | 
						|
 | 
						|
// Tests ResultOf.
 | 
						|
 | 
						|
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
 | 
						|
// function pointer.
 | 
						|
std::string IntToStringFunction(int input) {
 | 
						|
  return input == 1 ? "foo" : "bar";
 | 
						|
}
 | 
						|
 | 
						|
TEST(ResultOfTest, WorksForFunctionPointers) {
 | 
						|
  Matcher<int> matcher = ResultOf(&IntToStringFunction, Eq(std::string("foo")));
 | 
						|
 | 
						|
  EXPECT_TRUE(matcher.Matches(1));
 | 
						|
  EXPECT_FALSE(matcher.Matches(2));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ResultOf() can describe itself.
 | 
						|
TEST(ResultOfTest, CanDescribeItself) {
 | 
						|
  Matcher<int> matcher = ResultOf(&IntToStringFunction, StrEq("foo"));
 | 
						|
 | 
						|
  EXPECT_EQ("is mapped by the given callable to a value that "
 | 
						|
            "is equal to \"foo\"", Describe(matcher));
 | 
						|
  EXPECT_EQ("is mapped by the given callable to a value that "
 | 
						|
            "isn't equal to \"foo\"", DescribeNegation(matcher));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ResultOf() can explain the match result.
 | 
						|
int IntFunction(int input) { return input == 42 ? 80 : 90; }
 | 
						|
 | 
						|
TEST(ResultOfTest, CanExplainMatchResult) {
 | 
						|
  Matcher<int> matcher = ResultOf(&IntFunction, Ge(85));
 | 
						|
  EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"),
 | 
						|
            Explain(matcher, 36));
 | 
						|
 | 
						|
  matcher = ResultOf(&IntFunction, GreaterThan(85));
 | 
						|
  EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") +
 | 
						|
            ", which is 5 more than 85", Explain(matcher, 36));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
 | 
						|
// returns a non-reference.
 | 
						|
TEST(ResultOfTest, WorksForNonReferenceResults) {
 | 
						|
  Matcher<int> matcher = ResultOf(&IntFunction, Eq(80));
 | 
						|
 | 
						|
  EXPECT_TRUE(matcher.Matches(42));
 | 
						|
  EXPECT_FALSE(matcher.Matches(36));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
 | 
						|
// returns a reference to non-const.
 | 
						|
double& DoubleFunction(double& input) { return input; }  // NOLINT
 | 
						|
 | 
						|
Uncopyable& RefUncopyableFunction(Uncopyable& obj) {  // NOLINT
 | 
						|
  return obj;
 | 
						|
}
 | 
						|
 | 
						|
TEST(ResultOfTest, WorksForReferenceToNonConstResults) {
 | 
						|
  double x = 3.14;
 | 
						|
  double x2 = x;
 | 
						|
  Matcher<double&> matcher = ResultOf(&DoubleFunction, Ref(x));
 | 
						|
 | 
						|
  EXPECT_TRUE(matcher.Matches(x));
 | 
						|
  EXPECT_FALSE(matcher.Matches(x2));
 | 
						|
 | 
						|
  // Test that ResultOf works with uncopyable objects
 | 
						|
  Uncopyable obj(0);
 | 
						|
  Uncopyable obj2(0);
 | 
						|
  Matcher<Uncopyable&> matcher2 =
 | 
						|
      ResultOf(&RefUncopyableFunction, Ref(obj));
 | 
						|
 | 
						|
  EXPECT_TRUE(matcher2.Matches(obj));
 | 
						|
  EXPECT_FALSE(matcher2.Matches(obj2));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
 | 
						|
// returns a reference to const.
 | 
						|
const std::string& StringFunction(const std::string& input) { return input; }
 | 
						|
 | 
						|
TEST(ResultOfTest, WorksForReferenceToConstResults) {
 | 
						|
  std::string s = "foo";
 | 
						|
  std::string s2 = s;
 | 
						|
  Matcher<const std::string&> matcher = ResultOf(&StringFunction, Ref(s));
 | 
						|
 | 
						|
  EXPECT_TRUE(matcher.Matches(s));
 | 
						|
  EXPECT_FALSE(matcher.Matches(s2));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ResultOf(f, m) works when f(x) and m's
 | 
						|
// argument types are compatible but different.
 | 
						|
TEST(ResultOfTest, WorksForCompatibleMatcherTypes) {
 | 
						|
  // IntFunction() returns int but the inner matcher expects a signed char.
 | 
						|
  Matcher<int> matcher = ResultOf(IntFunction, Matcher<signed char>(Ge(85)));
 | 
						|
 | 
						|
  EXPECT_TRUE(matcher.Matches(36));
 | 
						|
  EXPECT_FALSE(matcher.Matches(42));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that the program aborts when ResultOf is passed
 | 
						|
// a NULL function pointer.
 | 
						|
TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) {
 | 
						|
  EXPECT_DEATH_IF_SUPPORTED(
 | 
						|
      ResultOf(static_cast<std::string (*)(int dummy)>(NULL),
 | 
						|
               Eq(std::string("foo"))),
 | 
						|
      "NULL function pointer is passed into ResultOf\\(\\)\\.");
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
 | 
						|
// function reference.
 | 
						|
TEST(ResultOfTest, WorksForFunctionReferences) {
 | 
						|
  Matcher<int> matcher = ResultOf(IntToStringFunction, StrEq("foo"));
 | 
						|
  EXPECT_TRUE(matcher.Matches(1));
 | 
						|
  EXPECT_FALSE(matcher.Matches(2));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
 | 
						|
// function object.
 | 
						|
struct Functor : public ::std::unary_function<int, std::string> {
 | 
						|
  result_type operator()(argument_type input) const {
 | 
						|
    return IntToStringFunction(input);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
TEST(ResultOfTest, WorksForFunctors) {
 | 
						|
  Matcher<int> matcher = ResultOf(Functor(), Eq(std::string("foo")));
 | 
						|
 | 
						|
  EXPECT_TRUE(matcher.Matches(1));
 | 
						|
  EXPECT_FALSE(matcher.Matches(2));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
 | 
						|
// functor with more then one operator() defined. ResultOf() must work
 | 
						|
// for each defined operator().
 | 
						|
struct PolymorphicFunctor {
 | 
						|
  typedef int result_type;
 | 
						|
  int operator()(int n) { return n; }
 | 
						|
  int operator()(const char* s) { return static_cast<int>(strlen(s)); }
 | 
						|
};
 | 
						|
 | 
						|
TEST(ResultOfTest, WorksForPolymorphicFunctors) {
 | 
						|
  Matcher<int> matcher_int = ResultOf(PolymorphicFunctor(), Ge(5));
 | 
						|
 | 
						|
  EXPECT_TRUE(matcher_int.Matches(10));
 | 
						|
  EXPECT_FALSE(matcher_int.Matches(2));
 | 
						|
 | 
						|
  Matcher<const char*> matcher_string = ResultOf(PolymorphicFunctor(), Ge(5));
 | 
						|
 | 
						|
  EXPECT_TRUE(matcher_string.Matches("long string"));
 | 
						|
  EXPECT_FALSE(matcher_string.Matches("shrt"));
 | 
						|
}
 | 
						|
 | 
						|
const int* ReferencingFunction(const int& n) { return &n; }
 | 
						|
 | 
						|
struct ReferencingFunctor {
 | 
						|
  typedef const int* result_type;
 | 
						|
  result_type operator()(const int& n) { return &n; }
 | 
						|
};
 | 
						|
 | 
						|
TEST(ResultOfTest, WorksForReferencingCallables) {
 | 
						|
  const int n = 1;
 | 
						|
  const int n2 = 1;
 | 
						|
  Matcher<const int&> matcher2 = ResultOf(ReferencingFunction, Eq(&n));
 | 
						|
  EXPECT_TRUE(matcher2.Matches(n));
 | 
						|
  EXPECT_FALSE(matcher2.Matches(n2));
 | 
						|
 | 
						|
  Matcher<const int&> matcher3 = ResultOf(ReferencingFunctor(), Eq(&n));
 | 
						|
  EXPECT_TRUE(matcher3.Matches(n));
 | 
						|
  EXPECT_FALSE(matcher3.Matches(n2));
 | 
						|
}
 | 
						|
 | 
						|
class DivisibleByImpl {
 | 
						|
 public:
 | 
						|
  explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {}
 | 
						|
 | 
						|
  // For testing using ExplainMatchResultTo() with polymorphic matchers.
 | 
						|
  template <typename T>
 | 
						|
  bool MatchAndExplain(const T& n, MatchResultListener* listener) const {
 | 
						|
    *listener << "which is " << (n % divider_) << " modulo "
 | 
						|
              << divider_;
 | 
						|
    return (n % divider_) == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  void DescribeTo(ostream* os) const {
 | 
						|
    *os << "is divisible by " << divider_;
 | 
						|
  }
 | 
						|
 | 
						|
  void DescribeNegationTo(ostream* os) const {
 | 
						|
    *os << "is not divisible by " << divider_;
 | 
						|
  }
 | 
						|
 | 
						|
  void set_divider(int a_divider) { divider_ = a_divider; }
 | 
						|
  int divider() const { return divider_; }
 | 
						|
 | 
						|
 private:
 | 
						|
  int divider_;
 | 
						|
};
 | 
						|
 | 
						|
PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) {
 | 
						|
  return MakePolymorphicMatcher(DivisibleByImpl(n));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that when AllOf() fails, only the first failing matcher is
 | 
						|
// asked to explain why.
 | 
						|
TEST(ExplainMatchResultTest, AllOf_False_False) {
 | 
						|
  const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
 | 
						|
  EXPECT_EQ("which is 1 modulo 4", Explain(m, 5));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that when AllOf() fails, only the first failing matcher is
 | 
						|
// asked to explain why.
 | 
						|
TEST(ExplainMatchResultTest, AllOf_False_True) {
 | 
						|
  const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
 | 
						|
  EXPECT_EQ("which is 2 modulo 4", Explain(m, 6));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that when AllOf() fails, only the first failing matcher is
 | 
						|
// asked to explain why.
 | 
						|
TEST(ExplainMatchResultTest, AllOf_True_False) {
 | 
						|
  const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3));
 | 
						|
  EXPECT_EQ("which is 2 modulo 3", Explain(m, 5));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that when AllOf() succeeds, all matchers are asked to explain
 | 
						|
// why.
 | 
						|
TEST(ExplainMatchResultTest, AllOf_True_True) {
 | 
						|
  const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3));
 | 
						|
  EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ExplainMatchResultTest, AllOf_True_True_2) {
 | 
						|
  const Matcher<int> m = AllOf(Ge(2), Le(3));
 | 
						|
  EXPECT_EQ("", Explain(m, 2));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ExplainmatcherResultTest, MonomorphicMatcher) {
 | 
						|
  const Matcher<int> m = GreaterThan(5);
 | 
						|
  EXPECT_EQ("which is 1 more than 5", Explain(m, 6));
 | 
						|
}
 | 
						|
 | 
						|
// The following two tests verify that values without a public copy
 | 
						|
// ctor can be used as arguments to matchers like Eq(), Ge(), and etc
 | 
						|
// with the help of ByRef().
 | 
						|
 | 
						|
class NotCopyable {
 | 
						|
 public:
 | 
						|
  explicit NotCopyable(int a_value) : value_(a_value) {}
 | 
						|
 | 
						|
  int value() const { return value_; }
 | 
						|
 | 
						|
  bool operator==(const NotCopyable& rhs) const {
 | 
						|
    return value() == rhs.value();
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator>=(const NotCopyable& rhs) const {
 | 
						|
    return value() >= rhs.value();
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  int value_;
 | 
						|
 | 
						|
  GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable);
 | 
						|
};
 | 
						|
 | 
						|
TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) {
 | 
						|
  const NotCopyable const_value1(1);
 | 
						|
  const Matcher<const NotCopyable&> m = Eq(ByRef(const_value1));
 | 
						|
 | 
						|
  const NotCopyable n1(1), n2(2);
 | 
						|
  EXPECT_TRUE(m.Matches(n1));
 | 
						|
  EXPECT_FALSE(m.Matches(n2));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ByRefTest, AllowsNotCopyableValueInMatchers) {
 | 
						|
  NotCopyable value2(2);
 | 
						|
  const Matcher<NotCopyable&> m = Ge(ByRef(value2));
 | 
						|
 | 
						|
  NotCopyable n1(1), n2(2);
 | 
						|
  EXPECT_FALSE(m.Matches(n1));
 | 
						|
  EXPECT_TRUE(m.Matches(n2));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsEmptyTest, ImplementsIsEmpty) {
 | 
						|
  vector<int> container;
 | 
						|
  EXPECT_THAT(container, IsEmpty());
 | 
						|
  container.push_back(0);
 | 
						|
  EXPECT_THAT(container, Not(IsEmpty()));
 | 
						|
  container.push_back(1);
 | 
						|
  EXPECT_THAT(container, Not(IsEmpty()));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsEmptyTest, WorksWithString) {
 | 
						|
  std::string text;
 | 
						|
  EXPECT_THAT(text, IsEmpty());
 | 
						|
  text = "foo";
 | 
						|
  EXPECT_THAT(text, Not(IsEmpty()));
 | 
						|
  text = std::string("\0", 1);
 | 
						|
  EXPECT_THAT(text, Not(IsEmpty()));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsEmptyTest, CanDescribeSelf) {
 | 
						|
  Matcher<vector<int> > m = IsEmpty();
 | 
						|
  EXPECT_EQ("is empty", Describe(m));
 | 
						|
  EXPECT_EQ("isn't empty", DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsEmptyTest, ExplainsResult) {
 | 
						|
  Matcher<vector<int> > m = IsEmpty();
 | 
						|
  vector<int> container;
 | 
						|
  EXPECT_EQ("", Explain(m, container));
 | 
						|
  container.push_back(0);
 | 
						|
  EXPECT_EQ("whose size is 1", Explain(m, container));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsTrueTest, IsTrueIsFalse) {
 | 
						|
  EXPECT_THAT(true, IsTrue());
 | 
						|
  EXPECT_THAT(false, IsFalse());
 | 
						|
  EXPECT_THAT(true, Not(IsFalse()));
 | 
						|
  EXPECT_THAT(false, Not(IsTrue()));
 | 
						|
  EXPECT_THAT(0, Not(IsTrue()));
 | 
						|
  EXPECT_THAT(0, IsFalse());
 | 
						|
  EXPECT_THAT(NULL, Not(IsTrue()));
 | 
						|
  EXPECT_THAT(NULL, IsFalse());
 | 
						|
  EXPECT_THAT(-1, IsTrue());
 | 
						|
  EXPECT_THAT(-1, Not(IsFalse()));
 | 
						|
  EXPECT_THAT(1, IsTrue());
 | 
						|
  EXPECT_THAT(1, Not(IsFalse()));
 | 
						|
  EXPECT_THAT(2, IsTrue());
 | 
						|
  EXPECT_THAT(2, Not(IsFalse()));
 | 
						|
  int a = 42;
 | 
						|
  EXPECT_THAT(a, IsTrue());
 | 
						|
  EXPECT_THAT(a, Not(IsFalse()));
 | 
						|
  EXPECT_THAT(&a, IsTrue());
 | 
						|
  EXPECT_THAT(&a, Not(IsFalse()));
 | 
						|
  EXPECT_THAT(false, Not(IsTrue()));
 | 
						|
  EXPECT_THAT(true, Not(IsFalse()));
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
  EXPECT_THAT(std::true_type(), IsTrue());
 | 
						|
  EXPECT_THAT(std::true_type(), Not(IsFalse()));
 | 
						|
  EXPECT_THAT(std::false_type(), IsFalse());
 | 
						|
  EXPECT_THAT(std::false_type(), Not(IsTrue()));
 | 
						|
  EXPECT_THAT(nullptr, Not(IsTrue()));
 | 
						|
  EXPECT_THAT(nullptr, IsFalse());
 | 
						|
  std::unique_ptr<int> null_unique;
 | 
						|
  std::unique_ptr<int> nonnull_unique(new int(0));
 | 
						|
  EXPECT_THAT(null_unique, Not(IsTrue()));
 | 
						|
  EXPECT_THAT(null_unique, IsFalse());
 | 
						|
  EXPECT_THAT(nonnull_unique, IsTrue());
 | 
						|
  EXPECT_THAT(nonnull_unique, Not(IsFalse()));
 | 
						|
#endif  // GTEST_LANG_CXX11
 | 
						|
}
 | 
						|
 | 
						|
TEST(SizeIsTest, ImplementsSizeIs) {
 | 
						|
  vector<int> container;
 | 
						|
  EXPECT_THAT(container, SizeIs(0));
 | 
						|
  EXPECT_THAT(container, Not(SizeIs(1)));
 | 
						|
  container.push_back(0);
 | 
						|
  EXPECT_THAT(container, Not(SizeIs(0)));
 | 
						|
  EXPECT_THAT(container, SizeIs(1));
 | 
						|
  container.push_back(0);
 | 
						|
  EXPECT_THAT(container, Not(SizeIs(0)));
 | 
						|
  EXPECT_THAT(container, SizeIs(2));
 | 
						|
}
 | 
						|
 | 
						|
TEST(SizeIsTest, WorksWithMap) {
 | 
						|
  map<std::string, int> container;
 | 
						|
  EXPECT_THAT(container, SizeIs(0));
 | 
						|
  EXPECT_THAT(container, Not(SizeIs(1)));
 | 
						|
  container.insert(make_pair("foo", 1));
 | 
						|
  EXPECT_THAT(container, Not(SizeIs(0)));
 | 
						|
  EXPECT_THAT(container, SizeIs(1));
 | 
						|
  container.insert(make_pair("bar", 2));
 | 
						|
  EXPECT_THAT(container, Not(SizeIs(0)));
 | 
						|
  EXPECT_THAT(container, SizeIs(2));
 | 
						|
}
 | 
						|
 | 
						|
TEST(SizeIsTest, WorksWithReferences) {
 | 
						|
  vector<int> container;
 | 
						|
  Matcher<const vector<int>&> m = SizeIs(1);
 | 
						|
  EXPECT_THAT(container, Not(m));
 | 
						|
  container.push_back(0);
 | 
						|
  EXPECT_THAT(container, m);
 | 
						|
}
 | 
						|
 | 
						|
TEST(SizeIsTest, CanDescribeSelf) {
 | 
						|
  Matcher<vector<int> > m = SizeIs(2);
 | 
						|
  EXPECT_EQ("size is equal to 2", Describe(m));
 | 
						|
  EXPECT_EQ("size isn't equal to 2", DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(SizeIsTest, ExplainsResult) {
 | 
						|
  Matcher<vector<int> > m1 = SizeIs(2);
 | 
						|
  Matcher<vector<int> > m2 = SizeIs(Lt(2u));
 | 
						|
  Matcher<vector<int> > m3 = SizeIs(AnyOf(0, 3));
 | 
						|
  Matcher<vector<int> > m4 = SizeIs(GreaterThan(1));
 | 
						|
  vector<int> container;
 | 
						|
  EXPECT_EQ("whose size 0 doesn't match", Explain(m1, container));
 | 
						|
  EXPECT_EQ("whose size 0 matches", Explain(m2, container));
 | 
						|
  EXPECT_EQ("whose size 0 matches", Explain(m3, container));
 | 
						|
  EXPECT_EQ("whose size 0 doesn't match, which is 1 less than 1",
 | 
						|
            Explain(m4, container));
 | 
						|
  container.push_back(0);
 | 
						|
  container.push_back(0);
 | 
						|
  EXPECT_EQ("whose size 2 matches", Explain(m1, container));
 | 
						|
  EXPECT_EQ("whose size 2 doesn't match", Explain(m2, container));
 | 
						|
  EXPECT_EQ("whose size 2 doesn't match", Explain(m3, container));
 | 
						|
  EXPECT_EQ("whose size 2 matches, which is 1 more than 1",
 | 
						|
            Explain(m4, container));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_HAS_TYPED_TEST
 | 
						|
// Tests ContainerEq with different container types, and
 | 
						|
// different element types.
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class ContainerEqTest : public testing::Test {};
 | 
						|
 | 
						|
typedef testing::Types<
 | 
						|
    set<int>,
 | 
						|
    vector<size_t>,
 | 
						|
    multiset<size_t>,
 | 
						|
    list<int> >
 | 
						|
    ContainerEqTestTypes;
 | 
						|
 | 
						|
TYPED_TEST_CASE(ContainerEqTest, ContainerEqTestTypes);
 | 
						|
 | 
						|
// Tests that the filled container is equal to itself.
 | 
						|
TYPED_TEST(ContainerEqTest, EqualsSelf) {
 | 
						|
  static const int vals[] = {1, 1, 2, 3, 5, 8};
 | 
						|
  TypeParam my_set(vals, vals + 6);
 | 
						|
  const Matcher<TypeParam> m = ContainerEq(my_set);
 | 
						|
  EXPECT_TRUE(m.Matches(my_set));
 | 
						|
  EXPECT_EQ("", Explain(m, my_set));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that missing values are reported.
 | 
						|
TYPED_TEST(ContainerEqTest, ValueMissing) {
 | 
						|
  static const int vals[] = {1, 1, 2, 3, 5, 8};
 | 
						|
  static const int test_vals[] = {2, 1, 8, 5};
 | 
						|
  TypeParam my_set(vals, vals + 6);
 | 
						|
  TypeParam test_set(test_vals, test_vals + 4);
 | 
						|
  const Matcher<TypeParam> m = ContainerEq(my_set);
 | 
						|
  EXPECT_FALSE(m.Matches(test_set));
 | 
						|
  EXPECT_EQ("which doesn't have these expected elements: 3",
 | 
						|
            Explain(m, test_set));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that added values are reported.
 | 
						|
TYPED_TEST(ContainerEqTest, ValueAdded) {
 | 
						|
  static const int vals[] = {1, 1, 2, 3, 5, 8};
 | 
						|
  static const int test_vals[] = {1, 2, 3, 5, 8, 46};
 | 
						|
  TypeParam my_set(vals, vals + 6);
 | 
						|
  TypeParam test_set(test_vals, test_vals + 6);
 | 
						|
  const Matcher<const TypeParam&> m = ContainerEq(my_set);
 | 
						|
  EXPECT_FALSE(m.Matches(test_set));
 | 
						|
  EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that added and missing values are reported together.
 | 
						|
TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) {
 | 
						|
  static const int vals[] = {1, 1, 2, 3, 5, 8};
 | 
						|
  static const int test_vals[] = {1, 2, 3, 8, 46};
 | 
						|
  TypeParam my_set(vals, vals + 6);
 | 
						|
  TypeParam test_set(test_vals, test_vals + 5);
 | 
						|
  const Matcher<TypeParam> m = ContainerEq(my_set);
 | 
						|
  EXPECT_FALSE(m.Matches(test_set));
 | 
						|
  EXPECT_EQ("which has these unexpected elements: 46,\n"
 | 
						|
            "and doesn't have these expected elements: 5",
 | 
						|
            Explain(m, test_set));
 | 
						|
}
 | 
						|
 | 
						|
// Tests duplicated value -- expect no explanation.
 | 
						|
TYPED_TEST(ContainerEqTest, DuplicateDifference) {
 | 
						|
  static const int vals[] = {1, 1, 2, 3, 5, 8};
 | 
						|
  static const int test_vals[] = {1, 2, 3, 5, 8};
 | 
						|
  TypeParam my_set(vals, vals + 6);
 | 
						|
  TypeParam test_set(test_vals, test_vals + 5);
 | 
						|
  const Matcher<const TypeParam&> m = ContainerEq(my_set);
 | 
						|
  // Depending on the container, match may be true or false
 | 
						|
  // But in any case there should be no explanation.
 | 
						|
  EXPECT_EQ("", Explain(m, test_set));
 | 
						|
}
 | 
						|
#endif  // GTEST_HAS_TYPED_TEST
 | 
						|
 | 
						|
// Tests that mutliple missing values are reported.
 | 
						|
// Using just vector here, so order is predictable.
 | 
						|
TEST(ContainerEqExtraTest, MultipleValuesMissing) {
 | 
						|
  static const int vals[] = {1, 1, 2, 3, 5, 8};
 | 
						|
  static const int test_vals[] = {2, 1, 5};
 | 
						|
  vector<int> my_set(vals, vals + 6);
 | 
						|
  vector<int> test_set(test_vals, test_vals + 3);
 | 
						|
  const Matcher<vector<int> > m = ContainerEq(my_set);
 | 
						|
  EXPECT_FALSE(m.Matches(test_set));
 | 
						|
  EXPECT_EQ("which doesn't have these expected elements: 3, 8",
 | 
						|
            Explain(m, test_set));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that added values are reported.
 | 
						|
// Using just vector here, so order is predictable.
 | 
						|
TEST(ContainerEqExtraTest, MultipleValuesAdded) {
 | 
						|
  static const int vals[] = {1, 1, 2, 3, 5, 8};
 | 
						|
  static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46};
 | 
						|
  list<size_t> my_set(vals, vals + 6);
 | 
						|
  list<size_t> test_set(test_vals, test_vals + 7);
 | 
						|
  const Matcher<const list<size_t>&> m = ContainerEq(my_set);
 | 
						|
  EXPECT_FALSE(m.Matches(test_set));
 | 
						|
  EXPECT_EQ("which has these unexpected elements: 92, 46",
 | 
						|
            Explain(m, test_set));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that added and missing values are reported together.
 | 
						|
TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) {
 | 
						|
  static const int vals[] = {1, 1, 2, 3, 5, 8};
 | 
						|
  static const int test_vals[] = {1, 2, 3, 92, 46};
 | 
						|
  list<size_t> my_set(vals, vals + 6);
 | 
						|
  list<size_t> test_set(test_vals, test_vals + 5);
 | 
						|
  const Matcher<const list<size_t> > m = ContainerEq(my_set);
 | 
						|
  EXPECT_FALSE(m.Matches(test_set));
 | 
						|
  EXPECT_EQ("which has these unexpected elements: 92, 46,\n"
 | 
						|
            "and doesn't have these expected elements: 5, 8",
 | 
						|
            Explain(m, test_set));
 | 
						|
}
 | 
						|
 | 
						|
// Tests to see that duplicate elements are detected,
 | 
						|
// but (as above) not reported in the explanation.
 | 
						|
TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) {
 | 
						|
  static const int vals[] = {1, 1, 2, 3, 5, 8};
 | 
						|
  static const int test_vals[] = {1, 2, 3, 5, 8};
 | 
						|
  vector<int> my_set(vals, vals + 6);
 | 
						|
  vector<int> test_set(test_vals, test_vals + 5);
 | 
						|
  const Matcher<vector<int> > m = ContainerEq(my_set);
 | 
						|
  EXPECT_TRUE(m.Matches(my_set));
 | 
						|
  EXPECT_FALSE(m.Matches(test_set));
 | 
						|
  // There is nothing to report when both sets contain all the same values.
 | 
						|
  EXPECT_EQ("", Explain(m, test_set));
 | 
						|
}
 | 
						|
 | 
						|
// Tests that ContainerEq works for non-trivial associative containers,
 | 
						|
// like maps.
 | 
						|
TEST(ContainerEqExtraTest, WorksForMaps) {
 | 
						|
  map<int, std::string> my_map;
 | 
						|
  my_map[0] = "a";
 | 
						|
  my_map[1] = "b";
 | 
						|
 | 
						|
  map<int, std::string> test_map;
 | 
						|
  test_map[0] = "aa";
 | 
						|
  test_map[1] = "b";
 | 
						|
 | 
						|
  const Matcher<const map<int, std::string>&> m = ContainerEq(my_map);
 | 
						|
  EXPECT_TRUE(m.Matches(my_map));
 | 
						|
  EXPECT_FALSE(m.Matches(test_map));
 | 
						|
 | 
						|
  EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n"
 | 
						|
            "and doesn't have these expected elements: (0, \"a\")",
 | 
						|
            Explain(m, test_map));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ContainerEqExtraTest, WorksForNativeArray) {
 | 
						|
  int a1[] = {1, 2, 3};
 | 
						|
  int a2[] = {1, 2, 3};
 | 
						|
  int b[] = {1, 2, 4};
 | 
						|
 | 
						|
  EXPECT_THAT(a1, ContainerEq(a2));
 | 
						|
  EXPECT_THAT(a1, Not(ContainerEq(b)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) {
 | 
						|
  const char a1[][3] = {"hi", "lo"};
 | 
						|
  const char a2[][3] = {"hi", "lo"};
 | 
						|
  const char b[][3] = {"lo", "hi"};
 | 
						|
 | 
						|
  // Tests using ContainerEq() in the first dimension.
 | 
						|
  EXPECT_THAT(a1, ContainerEq(a2));
 | 
						|
  EXPECT_THAT(a1, Not(ContainerEq(b)));
 | 
						|
 | 
						|
  // Tests using ContainerEq() in the second dimension.
 | 
						|
  EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1])));
 | 
						|
  EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1])));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) {
 | 
						|
  const int a1[] = {1, 2, 3};
 | 
						|
  const int a2[] = {1, 2, 3};
 | 
						|
  const int b[] = {1, 2, 3, 4};
 | 
						|
 | 
						|
  const int* const p1 = a1;
 | 
						|
  EXPECT_THAT(make_tuple(p1, 3), ContainerEq(a2));
 | 
						|
  EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(b)));
 | 
						|
 | 
						|
  const int c[] = {1, 3, 2};
 | 
						|
  EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(c)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) {
 | 
						|
  std::string a1[][3] = {
 | 
						|
    {"hi", "hello", "ciao"},
 | 
						|
    {"bye", "see you", "ciao"}
 | 
						|
  };
 | 
						|
 | 
						|
  std::string a2[][3] = {
 | 
						|
    {"hi", "hello", "ciao"},
 | 
						|
    {"bye", "see you", "ciao"}
 | 
						|
  };
 | 
						|
 | 
						|
  const Matcher<const std::string(&)[2][3]> m = ContainerEq(a2);
 | 
						|
  EXPECT_THAT(a1, m);
 | 
						|
 | 
						|
  a2[0][0] = "ha";
 | 
						|
  EXPECT_THAT(a1, m);
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedByTest, WorksForEmptyContainer) {
 | 
						|
  const vector<int> numbers;
 | 
						|
  EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre()));
 | 
						|
  EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedByTest, WorksForNonEmptyContainer) {
 | 
						|
  vector<unsigned> numbers;
 | 
						|
  numbers.push_back(3);
 | 
						|
  numbers.push_back(1);
 | 
						|
  numbers.push_back(2);
 | 
						|
  numbers.push_back(2);
 | 
						|
  EXPECT_THAT(numbers, WhenSortedBy(greater<unsigned>(),
 | 
						|
                                    ElementsAre(3, 2, 2, 1)));
 | 
						|
  EXPECT_THAT(numbers, Not(WhenSortedBy(greater<unsigned>(),
 | 
						|
                                        ElementsAre(1, 2, 2, 3))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedByTest, WorksForNonVectorContainer) {
 | 
						|
  list<std::string> words;
 | 
						|
  words.push_back("say");
 | 
						|
  words.push_back("hello");
 | 
						|
  words.push_back("world");
 | 
						|
  EXPECT_THAT(words, WhenSortedBy(less<std::string>(),
 | 
						|
                                  ElementsAre("hello", "say", "world")));
 | 
						|
  EXPECT_THAT(words, Not(WhenSortedBy(less<std::string>(),
 | 
						|
                                      ElementsAre("say", "hello", "world"))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedByTest, WorksForNativeArray) {
 | 
						|
  const int numbers[] = {1, 3, 2, 4};
 | 
						|
  const int sorted_numbers[] = {1, 2, 3, 4};
 | 
						|
  EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre(1, 2, 3, 4)));
 | 
						|
  EXPECT_THAT(numbers, WhenSortedBy(less<int>(),
 | 
						|
                                    ElementsAreArray(sorted_numbers)));
 | 
						|
  EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1, 3, 2, 4))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedByTest, CanDescribeSelf) {
 | 
						|
  const Matcher<vector<int> > m = WhenSortedBy(less<int>(), ElementsAre(1, 2));
 | 
						|
  EXPECT_EQ("(when sorted) has 2 elements where\n"
 | 
						|
            "element #0 is equal to 1,\n"
 | 
						|
            "element #1 is equal to 2",
 | 
						|
            Describe(m));
 | 
						|
  EXPECT_EQ("(when sorted) doesn't have 2 elements, or\n"
 | 
						|
            "element #0 isn't equal to 1, or\n"
 | 
						|
            "element #1 isn't equal to 2",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedByTest, ExplainsMatchResult) {
 | 
						|
  const int a[] = {2, 1};
 | 
						|
  EXPECT_EQ("which is { 1, 2 } when sorted, whose element #0 doesn't match",
 | 
						|
            Explain(WhenSortedBy(less<int>(), ElementsAre(2, 3)), a));
 | 
						|
  EXPECT_EQ("which is { 1, 2 } when sorted",
 | 
						|
            Explain(WhenSortedBy(less<int>(), ElementsAre(1, 2)), a));
 | 
						|
}
 | 
						|
 | 
						|
// WhenSorted() is a simple wrapper on WhenSortedBy().  Hence we don't
 | 
						|
// need to test it as exhaustively as we test the latter.
 | 
						|
 | 
						|
TEST(WhenSortedTest, WorksForEmptyContainer) {
 | 
						|
  const vector<int> numbers;
 | 
						|
  EXPECT_THAT(numbers, WhenSorted(ElementsAre()));
 | 
						|
  EXPECT_THAT(numbers, Not(WhenSorted(ElementsAre(1))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedTest, WorksForNonEmptyContainer) {
 | 
						|
  list<std::string> words;
 | 
						|
  words.push_back("3");
 | 
						|
  words.push_back("1");
 | 
						|
  words.push_back("2");
 | 
						|
  words.push_back("2");
 | 
						|
  EXPECT_THAT(words, WhenSorted(ElementsAre("1", "2", "2", "3")));
 | 
						|
  EXPECT_THAT(words, Not(WhenSorted(ElementsAre("3", "1", "2", "2"))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedTest, WorksForMapTypes) {
 | 
						|
  map<std::string, int> word_counts;
 | 
						|
  word_counts["and"] = 1;
 | 
						|
  word_counts["the"] = 1;
 | 
						|
  word_counts["buffalo"] = 2;
 | 
						|
  EXPECT_THAT(word_counts,
 | 
						|
              WhenSorted(ElementsAre(Pair("and", 1), Pair("buffalo", 2),
 | 
						|
                                     Pair("the", 1))));
 | 
						|
  EXPECT_THAT(word_counts,
 | 
						|
              Not(WhenSorted(ElementsAre(Pair("and", 1), Pair("the", 1),
 | 
						|
                                         Pair("buffalo", 2)))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedTest, WorksForMultiMapTypes) {
 | 
						|
    multimap<int, int> ifib;
 | 
						|
    ifib.insert(make_pair(8, 6));
 | 
						|
    ifib.insert(make_pair(2, 3));
 | 
						|
    ifib.insert(make_pair(1, 1));
 | 
						|
    ifib.insert(make_pair(3, 4));
 | 
						|
    ifib.insert(make_pair(1, 2));
 | 
						|
    ifib.insert(make_pair(5, 5));
 | 
						|
    EXPECT_THAT(ifib, WhenSorted(ElementsAre(Pair(1, 1),
 | 
						|
                                             Pair(1, 2),
 | 
						|
                                             Pair(2, 3),
 | 
						|
                                             Pair(3, 4),
 | 
						|
                                             Pair(5, 5),
 | 
						|
                                             Pair(8, 6))));
 | 
						|
    EXPECT_THAT(ifib, Not(WhenSorted(ElementsAre(Pair(8, 6),
 | 
						|
                                                 Pair(2, 3),
 | 
						|
                                                 Pair(1, 1),
 | 
						|
                                                 Pair(3, 4),
 | 
						|
                                                 Pair(1, 2),
 | 
						|
                                                 Pair(5, 5)))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedTest, WorksForPolymorphicMatcher) {
 | 
						|
    std::deque<int> d;
 | 
						|
    d.push_back(2);
 | 
						|
    d.push_back(1);
 | 
						|
    EXPECT_THAT(d, WhenSorted(ElementsAre(1, 2)));
 | 
						|
    EXPECT_THAT(d, Not(WhenSorted(ElementsAre(2, 1))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedTest, WorksForVectorConstRefMatcher) {
 | 
						|
    std::deque<int> d;
 | 
						|
    d.push_back(2);
 | 
						|
    d.push_back(1);
 | 
						|
    Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2);
 | 
						|
    EXPECT_THAT(d, WhenSorted(vector_match));
 | 
						|
    Matcher<const std::vector<int>&> not_vector_match = ElementsAre(2, 1);
 | 
						|
    EXPECT_THAT(d, Not(WhenSorted(not_vector_match)));
 | 
						|
}
 | 
						|
 | 
						|
// Deliberately bare pseudo-container.
 | 
						|
// Offers only begin() and end() accessors, yielding InputIterator.
 | 
						|
template <typename T>
 | 
						|
class Streamlike {
 | 
						|
 private:
 | 
						|
  class ConstIter;
 | 
						|
 public:
 | 
						|
  typedef ConstIter const_iterator;
 | 
						|
  typedef T value_type;
 | 
						|
 | 
						|
  template <typename InIter>
 | 
						|
  Streamlike(InIter first, InIter last) : remainder_(first, last) {}
 | 
						|
 | 
						|
  const_iterator begin() const {
 | 
						|
    return const_iterator(this, remainder_.begin());
 | 
						|
  }
 | 
						|
  const_iterator end() const {
 | 
						|
    return const_iterator(this, remainder_.end());
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  class ConstIter : public std::iterator<std::input_iterator_tag,
 | 
						|
                                         value_type,
 | 
						|
                                         ptrdiff_t,
 | 
						|
                                         const value_type*,
 | 
						|
                                         const value_type&> {
 | 
						|
   public:
 | 
						|
    ConstIter(const Streamlike* s,
 | 
						|
              typename std::list<value_type>::iterator pos)
 | 
						|
        : s_(s), pos_(pos) {}
 | 
						|
 | 
						|
    const value_type& operator*() const { return *pos_; }
 | 
						|
    const value_type* operator->() const { return &*pos_; }
 | 
						|
    ConstIter& operator++() {
 | 
						|
      s_->remainder_.erase(pos_++);
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    // *iter++ is required to work (see std::istreambuf_iterator).
 | 
						|
    // (void)iter++ is also required to work.
 | 
						|
    class PostIncrProxy {
 | 
						|
     public:
 | 
						|
      explicit PostIncrProxy(const value_type& value) : value_(value) {}
 | 
						|
      value_type operator*() const { return value_; }
 | 
						|
     private:
 | 
						|
      value_type value_;
 | 
						|
    };
 | 
						|
    PostIncrProxy operator++(int) {
 | 
						|
      PostIncrProxy proxy(**this);
 | 
						|
      ++(*this);
 | 
						|
      return proxy;
 | 
						|
    }
 | 
						|
 | 
						|
    friend bool operator==(const ConstIter& a, const ConstIter& b) {
 | 
						|
      return a.s_ == b.s_ && a.pos_ == b.pos_;
 | 
						|
    }
 | 
						|
    friend bool operator!=(const ConstIter& a, const ConstIter& b) {
 | 
						|
      return !(a == b);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    const Streamlike* s_;
 | 
						|
    typename std::list<value_type>::iterator pos_;
 | 
						|
  };
 | 
						|
 | 
						|
  friend std::ostream& operator<<(std::ostream& os, const Streamlike& s) {
 | 
						|
    os << "[";
 | 
						|
    typedef typename std::list<value_type>::const_iterator Iter;
 | 
						|
    const char* sep = "";
 | 
						|
    for (Iter it = s.remainder_.begin(); it != s.remainder_.end(); ++it) {
 | 
						|
      os << sep << *it;
 | 
						|
      sep = ",";
 | 
						|
    }
 | 
						|
    os << "]";
 | 
						|
    return os;
 | 
						|
  }
 | 
						|
 | 
						|
  mutable std::list<value_type> remainder_;  // modified by iteration
 | 
						|
};
 | 
						|
 | 
						|
TEST(StreamlikeTest, Iteration) {
 | 
						|
  const int a[5] = {2, 1, 4, 5, 3};
 | 
						|
  Streamlike<int> s(a, a + 5);
 | 
						|
  Streamlike<int>::const_iterator it = s.begin();
 | 
						|
  const int* ip = a;
 | 
						|
  while (it != s.end()) {
 | 
						|
    SCOPED_TRACE(ip - a);
 | 
						|
    EXPECT_EQ(*ip++, *it++);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_HAS_STD_FORWARD_LIST_
 | 
						|
TEST(BeginEndDistanceIsTest, WorksWithForwardList) {
 | 
						|
  std::forward_list<int> container;
 | 
						|
  EXPECT_THAT(container, BeginEndDistanceIs(0));
 | 
						|
  EXPECT_THAT(container, Not(BeginEndDistanceIs(1)));
 | 
						|
  container.push_front(0);
 | 
						|
  EXPECT_THAT(container, Not(BeginEndDistanceIs(0)));
 | 
						|
  EXPECT_THAT(container, BeginEndDistanceIs(1));
 | 
						|
  container.push_front(0);
 | 
						|
  EXPECT_THAT(container, Not(BeginEndDistanceIs(0)));
 | 
						|
  EXPECT_THAT(container, BeginEndDistanceIs(2));
 | 
						|
}
 | 
						|
#endif  // GTEST_HAS_STD_FORWARD_LIST_
 | 
						|
 | 
						|
TEST(BeginEndDistanceIsTest, WorksWithNonStdList) {
 | 
						|
  const int a[5] = {1, 2, 3, 4, 5};
 | 
						|
  Streamlike<int> s(a, a + 5);
 | 
						|
  EXPECT_THAT(s, BeginEndDistanceIs(5));
 | 
						|
}
 | 
						|
 | 
						|
TEST(BeginEndDistanceIsTest, CanDescribeSelf) {
 | 
						|
  Matcher<vector<int> > m = BeginEndDistanceIs(2);
 | 
						|
  EXPECT_EQ("distance between begin() and end() is equal to 2", Describe(m));
 | 
						|
  EXPECT_EQ("distance between begin() and end() isn't equal to 2",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(BeginEndDistanceIsTest, ExplainsResult) {
 | 
						|
  Matcher<vector<int> > m1 = BeginEndDistanceIs(2);
 | 
						|
  Matcher<vector<int> > m2 = BeginEndDistanceIs(Lt(2));
 | 
						|
  Matcher<vector<int> > m3 = BeginEndDistanceIs(AnyOf(0, 3));
 | 
						|
  Matcher<vector<int> > m4 = BeginEndDistanceIs(GreaterThan(1));
 | 
						|
  vector<int> container;
 | 
						|
  EXPECT_EQ("whose distance between begin() and end() 0 doesn't match",
 | 
						|
            Explain(m1, container));
 | 
						|
  EXPECT_EQ("whose distance between begin() and end() 0 matches",
 | 
						|
            Explain(m2, container));
 | 
						|
  EXPECT_EQ("whose distance between begin() and end() 0 matches",
 | 
						|
            Explain(m3, container));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "whose distance between begin() and end() 0 doesn't match, which is 1 "
 | 
						|
      "less than 1",
 | 
						|
      Explain(m4, container));
 | 
						|
  container.push_back(0);
 | 
						|
  container.push_back(0);
 | 
						|
  EXPECT_EQ("whose distance between begin() and end() 2 matches",
 | 
						|
            Explain(m1, container));
 | 
						|
  EXPECT_EQ("whose distance between begin() and end() 2 doesn't match",
 | 
						|
            Explain(m2, container));
 | 
						|
  EXPECT_EQ("whose distance between begin() and end() 2 doesn't match",
 | 
						|
            Explain(m3, container));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "whose distance between begin() and end() 2 matches, which is 1 more "
 | 
						|
      "than 1",
 | 
						|
      Explain(m4, container));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedTest, WorksForStreamlike) {
 | 
						|
  // Streamlike 'container' provides only minimal iterator support.
 | 
						|
  // Its iterators are tagged with input_iterator_tag.
 | 
						|
  const int a[5] = {2, 1, 4, 5, 3};
 | 
						|
  Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
  EXPECT_THAT(s, WhenSorted(ElementsAre(1, 2, 3, 4, 5)));
 | 
						|
  EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(WhenSortedTest, WorksForVectorConstRefMatcherOnStreamlike) {
 | 
						|
  const int a[] = {2, 1, 4, 5, 3};
 | 
						|
  Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
  Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2, 3, 4, 5);
 | 
						|
  EXPECT_THAT(s, WhenSorted(vector_match));
 | 
						|
  EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSupersetOfTest, WorksForNativeArray) {
 | 
						|
  const int subset[] = {1, 4};
 | 
						|
  const int superset[] = {1, 2, 4};
 | 
						|
  const int disjoint[] = {1, 0, 3};
 | 
						|
  EXPECT_THAT(subset, IsSupersetOf(subset));
 | 
						|
  EXPECT_THAT(subset, Not(IsSupersetOf(superset)));
 | 
						|
  EXPECT_THAT(superset, IsSupersetOf(subset));
 | 
						|
  EXPECT_THAT(subset, Not(IsSupersetOf(disjoint)));
 | 
						|
  EXPECT_THAT(disjoint, Not(IsSupersetOf(subset)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSupersetOfTest, WorksWithDuplicates) {
 | 
						|
  const int not_enough[] = {1, 2};
 | 
						|
  const int enough[] = {1, 1, 2};
 | 
						|
  const int expected[] = {1, 1};
 | 
						|
  EXPECT_THAT(not_enough, Not(IsSupersetOf(expected)));
 | 
						|
  EXPECT_THAT(enough, IsSupersetOf(expected));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSupersetOfTest, WorksForEmpty) {
 | 
						|
  vector<int> numbers;
 | 
						|
  vector<int> expected;
 | 
						|
  EXPECT_THAT(numbers, IsSupersetOf(expected));
 | 
						|
  expected.push_back(1);
 | 
						|
  EXPECT_THAT(numbers, Not(IsSupersetOf(expected)));
 | 
						|
  expected.clear();
 | 
						|
  numbers.push_back(1);
 | 
						|
  numbers.push_back(2);
 | 
						|
  EXPECT_THAT(numbers, IsSupersetOf(expected));
 | 
						|
  expected.push_back(1);
 | 
						|
  EXPECT_THAT(numbers, IsSupersetOf(expected));
 | 
						|
  expected.push_back(2);
 | 
						|
  EXPECT_THAT(numbers, IsSupersetOf(expected));
 | 
						|
  expected.push_back(3);
 | 
						|
  EXPECT_THAT(numbers, Not(IsSupersetOf(expected)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSupersetOfTest, WorksForStreamlike) {
 | 
						|
  const int a[5] = {1, 2, 3, 4, 5};
 | 
						|
  Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
 | 
						|
  vector<int> expected;
 | 
						|
  expected.push_back(1);
 | 
						|
  expected.push_back(2);
 | 
						|
  expected.push_back(5);
 | 
						|
  EXPECT_THAT(s, IsSupersetOf(expected));
 | 
						|
 | 
						|
  expected.push_back(0);
 | 
						|
  EXPECT_THAT(s, Not(IsSupersetOf(expected)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSupersetOfTest, TakesStlContainer) {
 | 
						|
  const int actual[] = {3, 1, 2};
 | 
						|
 | 
						|
  ::std::list<int> expected;
 | 
						|
  expected.push_back(1);
 | 
						|
  expected.push_back(3);
 | 
						|
  EXPECT_THAT(actual, IsSupersetOf(expected));
 | 
						|
 | 
						|
  expected.push_back(4);
 | 
						|
  EXPECT_THAT(actual, Not(IsSupersetOf(expected)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSupersetOfTest, Describe) {
 | 
						|
  typedef std::vector<int> IntVec;
 | 
						|
  IntVec expected;
 | 
						|
  expected.push_back(111);
 | 
						|
  expected.push_back(222);
 | 
						|
  expected.push_back(333);
 | 
						|
  EXPECT_THAT(
 | 
						|
      Describe<IntVec>(IsSupersetOf(expected)),
 | 
						|
      Eq("a surjection from elements to requirements exists such that:\n"
 | 
						|
         " - an element is equal to 111\n"
 | 
						|
         " - an element is equal to 222\n"
 | 
						|
         " - an element is equal to 333"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSupersetOfTest, DescribeNegation) {
 | 
						|
  typedef std::vector<int> IntVec;
 | 
						|
  IntVec expected;
 | 
						|
  expected.push_back(111);
 | 
						|
  expected.push_back(222);
 | 
						|
  expected.push_back(333);
 | 
						|
  EXPECT_THAT(
 | 
						|
      DescribeNegation<IntVec>(IsSupersetOf(expected)),
 | 
						|
      Eq("no surjection from elements to requirements exists such that:\n"
 | 
						|
         " - an element is equal to 111\n"
 | 
						|
         " - an element is equal to 222\n"
 | 
						|
         " - an element is equal to 333"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSupersetOfTest, MatchAndExplain) {
 | 
						|
  std::vector<int> v;
 | 
						|
  v.push_back(2);
 | 
						|
  v.push_back(3);
 | 
						|
  std::vector<int> expected;
 | 
						|
  expected.push_back(1);
 | 
						|
  expected.push_back(2);
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  ASSERT_FALSE(ExplainMatchResult(IsSupersetOf(expected), v, &listener))
 | 
						|
      << listener.str();
 | 
						|
  EXPECT_THAT(listener.str(),
 | 
						|
              Eq("where the following matchers don't match any elements:\n"
 | 
						|
                 "matcher #0: is equal to 1"));
 | 
						|
 | 
						|
  v.push_back(1);
 | 
						|
  listener.Clear();
 | 
						|
  ASSERT_TRUE(ExplainMatchResult(IsSupersetOf(expected), v, &listener))
 | 
						|
      << listener.str();
 | 
						|
  EXPECT_THAT(listener.str(), Eq("where:\n"
 | 
						|
                                 " - element #0 is matched by matcher #1,\n"
 | 
						|
                                 " - element #2 is matched by matcher #0"));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_HAS_STD_INITIALIZER_LIST_
 | 
						|
TEST(IsSupersetOfTest, WorksForRhsInitializerList) {
 | 
						|
  const int numbers[] = {1, 3, 6, 2, 4, 5};
 | 
						|
  EXPECT_THAT(numbers, IsSupersetOf({1, 2}));
 | 
						|
  EXPECT_THAT(numbers, Not(IsSupersetOf({3, 0})));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
TEST(IsSubsetOfTest, WorksForNativeArray) {
 | 
						|
  const int subset[] = {1, 4};
 | 
						|
  const int superset[] = {1, 2, 4};
 | 
						|
  const int disjoint[] = {1, 0, 3};
 | 
						|
  EXPECT_THAT(subset, IsSubsetOf(subset));
 | 
						|
  EXPECT_THAT(subset, IsSubsetOf(superset));
 | 
						|
  EXPECT_THAT(superset, Not(IsSubsetOf(subset)));
 | 
						|
  EXPECT_THAT(subset, Not(IsSubsetOf(disjoint)));
 | 
						|
  EXPECT_THAT(disjoint, Not(IsSubsetOf(subset)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSubsetOfTest, WorksWithDuplicates) {
 | 
						|
  const int not_enough[] = {1, 2};
 | 
						|
  const int enough[] = {1, 1, 2};
 | 
						|
  const int actual[] = {1, 1};
 | 
						|
  EXPECT_THAT(actual, Not(IsSubsetOf(not_enough)));
 | 
						|
  EXPECT_THAT(actual, IsSubsetOf(enough));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSubsetOfTest, WorksForEmpty) {
 | 
						|
  vector<int> numbers;
 | 
						|
  vector<int> expected;
 | 
						|
  EXPECT_THAT(numbers, IsSubsetOf(expected));
 | 
						|
  expected.push_back(1);
 | 
						|
  EXPECT_THAT(numbers, IsSubsetOf(expected));
 | 
						|
  expected.clear();
 | 
						|
  numbers.push_back(1);
 | 
						|
  numbers.push_back(2);
 | 
						|
  EXPECT_THAT(numbers, Not(IsSubsetOf(expected)));
 | 
						|
  expected.push_back(1);
 | 
						|
  EXPECT_THAT(numbers, Not(IsSubsetOf(expected)));
 | 
						|
  expected.push_back(2);
 | 
						|
  EXPECT_THAT(numbers, IsSubsetOf(expected));
 | 
						|
  expected.push_back(3);
 | 
						|
  EXPECT_THAT(numbers, IsSubsetOf(expected));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSubsetOfTest, WorksForStreamlike) {
 | 
						|
  const int a[5] = {1, 2};
 | 
						|
  Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
 | 
						|
  vector<int> expected;
 | 
						|
  expected.push_back(1);
 | 
						|
  EXPECT_THAT(s, Not(IsSubsetOf(expected)));
 | 
						|
  expected.push_back(2);
 | 
						|
  expected.push_back(5);
 | 
						|
  EXPECT_THAT(s, IsSubsetOf(expected));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSubsetOfTest, TakesStlContainer) {
 | 
						|
  const int actual[] = {3, 1, 2};
 | 
						|
 | 
						|
  ::std::list<int> expected;
 | 
						|
  expected.push_back(1);
 | 
						|
  expected.push_back(3);
 | 
						|
  EXPECT_THAT(actual, Not(IsSubsetOf(expected)));
 | 
						|
 | 
						|
  expected.push_back(2);
 | 
						|
  expected.push_back(4);
 | 
						|
  EXPECT_THAT(actual, IsSubsetOf(expected));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSubsetOfTest, Describe) {
 | 
						|
  typedef std::vector<int> IntVec;
 | 
						|
  IntVec expected;
 | 
						|
  expected.push_back(111);
 | 
						|
  expected.push_back(222);
 | 
						|
  expected.push_back(333);
 | 
						|
 | 
						|
  EXPECT_THAT(
 | 
						|
      Describe<IntVec>(IsSubsetOf(expected)),
 | 
						|
      Eq("an injection from elements to requirements exists such that:\n"
 | 
						|
         " - an element is equal to 111\n"
 | 
						|
         " - an element is equal to 222\n"
 | 
						|
         " - an element is equal to 333"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSubsetOfTest, DescribeNegation) {
 | 
						|
  typedef std::vector<int> IntVec;
 | 
						|
  IntVec expected;
 | 
						|
  expected.push_back(111);
 | 
						|
  expected.push_back(222);
 | 
						|
  expected.push_back(333);
 | 
						|
  EXPECT_THAT(
 | 
						|
      DescribeNegation<IntVec>(IsSubsetOf(expected)),
 | 
						|
      Eq("no injection from elements to requirements exists such that:\n"
 | 
						|
         " - an element is equal to 111\n"
 | 
						|
         " - an element is equal to 222\n"
 | 
						|
         " - an element is equal to 333"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsSubsetOfTest, MatchAndExplain) {
 | 
						|
  std::vector<int> v;
 | 
						|
  v.push_back(2);
 | 
						|
  v.push_back(3);
 | 
						|
  std::vector<int> expected;
 | 
						|
  expected.push_back(1);
 | 
						|
  expected.push_back(2);
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  ASSERT_FALSE(ExplainMatchResult(IsSubsetOf(expected), v, &listener))
 | 
						|
      << listener.str();
 | 
						|
  EXPECT_THAT(listener.str(),
 | 
						|
              Eq("where the following elements don't match any matchers:\n"
 | 
						|
                 "element #1: 3"));
 | 
						|
 | 
						|
  expected.push_back(3);
 | 
						|
  listener.Clear();
 | 
						|
  ASSERT_TRUE(ExplainMatchResult(IsSubsetOf(expected), v, &listener))
 | 
						|
      << listener.str();
 | 
						|
  EXPECT_THAT(listener.str(), Eq("where:\n"
 | 
						|
                                 " - element #0 is matched by matcher #1,\n"
 | 
						|
                                 " - element #1 is matched by matcher #2"));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_HAS_STD_INITIALIZER_LIST_
 | 
						|
TEST(IsSubsetOfTest, WorksForRhsInitializerList) {
 | 
						|
  const int numbers[] = {1, 2, 3};
 | 
						|
  EXPECT_THAT(numbers, IsSubsetOf({1, 2, 3, 4}));
 | 
						|
  EXPECT_THAT(numbers, Not(IsSubsetOf({1, 2})));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// Tests using ElementsAre() and ElementsAreArray() with stream-like
 | 
						|
// "containers".
 | 
						|
 | 
						|
TEST(ElemensAreStreamTest, WorksForStreamlike) {
 | 
						|
  const int a[5] = {1, 2, 3, 4, 5};
 | 
						|
  Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
  EXPECT_THAT(s, ElementsAre(1, 2, 3, 4, 5));
 | 
						|
  EXPECT_THAT(s, Not(ElementsAre(2, 1, 4, 5, 3)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ElemensAreArrayStreamTest, WorksForStreamlike) {
 | 
						|
  const int a[5] = {1, 2, 3, 4, 5};
 | 
						|
  Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
 | 
						|
  vector<int> expected;
 | 
						|
  expected.push_back(1);
 | 
						|
  expected.push_back(2);
 | 
						|
  expected.push_back(3);
 | 
						|
  expected.push_back(4);
 | 
						|
  expected.push_back(5);
 | 
						|
  EXPECT_THAT(s, ElementsAreArray(expected));
 | 
						|
 | 
						|
  expected[3] = 0;
 | 
						|
  EXPECT_THAT(s, Not(ElementsAreArray(expected)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ElementsAreTest, WorksWithUncopyable) {
 | 
						|
  Uncopyable objs[2];
 | 
						|
  objs[0].set_value(-3);
 | 
						|
  objs[1].set_value(1);
 | 
						|
  EXPECT_THAT(objs, ElementsAre(UncopyableIs(-3), Truly(ValueIsPositive)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(ElementsAreTest, TakesStlContainer) {
 | 
						|
  const int actual[] = {3, 1, 2};
 | 
						|
 | 
						|
  ::std::list<int> expected;
 | 
						|
  expected.push_back(3);
 | 
						|
  expected.push_back(1);
 | 
						|
  expected.push_back(2);
 | 
						|
  EXPECT_THAT(actual, ElementsAreArray(expected));
 | 
						|
 | 
						|
  expected.push_back(4);
 | 
						|
  EXPECT_THAT(actual, Not(ElementsAreArray(expected)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests for UnorderedElementsAreArray()
 | 
						|
 | 
						|
TEST(UnorderedElementsAreArrayTest, SucceedsWhenExpected) {
 | 
						|
  const int a[] = {0, 1, 2, 3, 4};
 | 
						|
  std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
  do {
 | 
						|
    StringMatchResultListener listener;
 | 
						|
    EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(a),
 | 
						|
                                   s, &listener)) << listener.str();
 | 
						|
  } while (std::next_permutation(s.begin(), s.end()));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedElementsAreArrayTest, VectorBool) {
 | 
						|
  const bool a[] = {0, 1, 0, 1, 1};
 | 
						|
  const bool b[] = {1, 0, 1, 1, 0};
 | 
						|
  std::vector<bool> expected(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
  std::vector<bool> actual(b, b + GTEST_ARRAY_SIZE_(b));
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(expected),
 | 
						|
                                 actual, &listener)) << listener.str();
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedElementsAreArrayTest, WorksForStreamlike) {
 | 
						|
  // Streamlike 'container' provides only minimal iterator support.
 | 
						|
  // Its iterators are tagged with input_iterator_tag, and it has no
 | 
						|
  // size() or empty() methods.
 | 
						|
  const int a[5] = {2, 1, 4, 5, 3};
 | 
						|
  Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
 | 
						|
  ::std::vector<int> expected;
 | 
						|
  expected.push_back(1);
 | 
						|
  expected.push_back(2);
 | 
						|
  expected.push_back(3);
 | 
						|
  expected.push_back(4);
 | 
						|
  expected.push_back(5);
 | 
						|
  EXPECT_THAT(s, UnorderedElementsAreArray(expected));
 | 
						|
 | 
						|
  expected.push_back(6);
 | 
						|
  EXPECT_THAT(s, Not(UnorderedElementsAreArray(expected)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedElementsAreArrayTest, TakesStlContainer) {
 | 
						|
  const int actual[] = {3, 1, 2};
 | 
						|
 | 
						|
  ::std::list<int> expected;
 | 
						|
  expected.push_back(1);
 | 
						|
  expected.push_back(2);
 | 
						|
  expected.push_back(3);
 | 
						|
  EXPECT_THAT(actual, UnorderedElementsAreArray(expected));
 | 
						|
 | 
						|
  expected.push_back(4);
 | 
						|
  EXPECT_THAT(actual, Not(UnorderedElementsAreArray(expected)));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_HAS_STD_INITIALIZER_LIST_
 | 
						|
 | 
						|
TEST(UnorderedElementsAreArrayTest, TakesInitializerList) {
 | 
						|
  const int a[5] = {2, 1, 4, 5, 3};
 | 
						|
  EXPECT_THAT(a, UnorderedElementsAreArray({1, 2, 3, 4, 5}));
 | 
						|
  EXPECT_THAT(a, Not(UnorderedElementsAreArray({1, 2, 3, 4, 6})));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfCStrings) {
 | 
						|
  const std::string a[5] = {"a", "b", "c", "d", "e"};
 | 
						|
  EXPECT_THAT(a, UnorderedElementsAreArray({"a", "b", "c", "d", "e"}));
 | 
						|
  EXPECT_THAT(a, Not(UnorderedElementsAreArray({"a", "b", "c", "d", "ef"})));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) {
 | 
						|
  const int a[5] = {2, 1, 4, 5, 3};
 | 
						|
  EXPECT_THAT(a, UnorderedElementsAreArray(
 | 
						|
      {Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)}));
 | 
						|
  EXPECT_THAT(a, Not(UnorderedElementsAreArray(
 | 
						|
      {Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)})));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedElementsAreArrayTest,
 | 
						|
     TakesInitializerListOfDifferentTypedMatchers) {
 | 
						|
  const int a[5] = {2, 1, 4, 5, 3};
 | 
						|
  // The compiler cannot infer the type of the initializer list if its
 | 
						|
  // elements have different types.  We must explicitly specify the
 | 
						|
  // unified element type in this case.
 | 
						|
  EXPECT_THAT(a, UnorderedElementsAreArray<Matcher<int> >(
 | 
						|
      {Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)}));
 | 
						|
  EXPECT_THAT(a, Not(UnorderedElementsAreArray<Matcher<int> >(
 | 
						|
      {Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)})));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // GTEST_HAS_STD_INITIALIZER_LIST_
 | 
						|
 | 
						|
class UnorderedElementsAreTest : public testing::Test {
 | 
						|
 protected:
 | 
						|
  typedef std::vector<int> IntVec;
 | 
						|
};
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, WorksWithUncopyable) {
 | 
						|
  Uncopyable objs[2];
 | 
						|
  objs[0].set_value(-3);
 | 
						|
  objs[1].set_value(1);
 | 
						|
  EXPECT_THAT(objs,
 | 
						|
              UnorderedElementsAre(Truly(ValueIsPositive), UncopyableIs(-3)));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, SucceedsWhenExpected) {
 | 
						|
  const int a[] = {1, 2, 3};
 | 
						|
  std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
  do {
 | 
						|
    StringMatchResultListener listener;
 | 
						|
    EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3),
 | 
						|
                                   s, &listener)) << listener.str();
 | 
						|
  } while (std::next_permutation(s.begin(), s.end()));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, FailsWhenAnElementMatchesNoMatcher) {
 | 
						|
  const int a[] = {1, 2, 3};
 | 
						|
  std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
  std::vector<Matcher<int> > mv;
 | 
						|
  mv.push_back(1);
 | 
						|
  mv.push_back(2);
 | 
						|
  mv.push_back(2);
 | 
						|
  // The element with value '3' matches nothing: fail fast.
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAreArray(mv),
 | 
						|
                                  s, &listener)) << listener.str();
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, WorksForStreamlike) {
 | 
						|
  // Streamlike 'container' provides only minimal iterator support.
 | 
						|
  // Its iterators are tagged with input_iterator_tag, and it has no
 | 
						|
  // size() or empty() methods.
 | 
						|
  const int a[5] = {2, 1, 4, 5, 3};
 | 
						|
  Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 | 
						|
 | 
						|
  EXPECT_THAT(s, UnorderedElementsAre(1, 2, 3, 4, 5));
 | 
						|
  EXPECT_THAT(s, Not(UnorderedElementsAre(2, 2, 3, 4, 5)));
 | 
						|
}
 | 
						|
 | 
						|
// One naive implementation of the matcher runs in O(N!) time, which is too
 | 
						|
// slow for many real-world inputs. This test shows that our matcher can match
 | 
						|
// 100 inputs very quickly (a few milliseconds).  An O(100!) is 10^158
 | 
						|
// iterations and obviously effectively incomputable.
 | 
						|
// [ RUN      ] UnorderedElementsAreTest.Performance
 | 
						|
// [       OK ] UnorderedElementsAreTest.Performance (4 ms)
 | 
						|
TEST_F(UnorderedElementsAreTest, Performance) {
 | 
						|
  std::vector<int> s;
 | 
						|
  std::vector<Matcher<int> > mv;
 | 
						|
  for (int i = 0; i < 100; ++i) {
 | 
						|
    s.push_back(i);
 | 
						|
    mv.push_back(_);
 | 
						|
  }
 | 
						|
  mv[50] = Eq(0);
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv),
 | 
						|
                                 s, &listener)) << listener.str();
 | 
						|
}
 | 
						|
 | 
						|
// Another variant of 'Performance' with similar expectations.
 | 
						|
// [ RUN      ] UnorderedElementsAreTest.PerformanceHalfStrict
 | 
						|
// [       OK ] UnorderedElementsAreTest.PerformanceHalfStrict (4 ms)
 | 
						|
TEST_F(UnorderedElementsAreTest, PerformanceHalfStrict) {
 | 
						|
  std::vector<int> s;
 | 
						|
  std::vector<Matcher<int> > mv;
 | 
						|
  for (int i = 0; i < 100; ++i) {
 | 
						|
    s.push_back(i);
 | 
						|
    if (i & 1) {
 | 
						|
      mv.push_back(_);
 | 
						|
    } else {
 | 
						|
      mv.push_back(i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv),
 | 
						|
                                 s, &listener)) << listener.str();
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, FailMessageCountWrong) {
 | 
						|
  std::vector<int> v;
 | 
						|
  v.push_back(4);
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3),
 | 
						|
                                  v, &listener)) << listener.str();
 | 
						|
  EXPECT_THAT(listener.str(), Eq("which has 1 element"));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, FailMessageCountWrongZero) {
 | 
						|
  std::vector<int> v;
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3),
 | 
						|
                                  v, &listener)) << listener.str();
 | 
						|
  EXPECT_THAT(listener.str(), Eq(""));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatchers) {
 | 
						|
  std::vector<int> v;
 | 
						|
  v.push_back(1);
 | 
						|
  v.push_back(1);
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2),
 | 
						|
                                  v, &listener)) << listener.str();
 | 
						|
  EXPECT_THAT(
 | 
						|
      listener.str(),
 | 
						|
      Eq("where the following matchers don't match any elements:\n"
 | 
						|
         "matcher #1: is equal to 2"));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedElements) {
 | 
						|
  std::vector<int> v;
 | 
						|
  v.push_back(1);
 | 
						|
  v.push_back(2);
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 1),
 | 
						|
                                  v, &listener)) << listener.str();
 | 
						|
  EXPECT_THAT(
 | 
						|
      listener.str(),
 | 
						|
      Eq("where the following elements don't match any matchers:\n"
 | 
						|
         "element #1: 2"));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatcherAndElement) {
 | 
						|
  std::vector<int> v;
 | 
						|
  v.push_back(2);
 | 
						|
  v.push_back(3);
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2),
 | 
						|
                                  v, &listener)) << listener.str();
 | 
						|
  EXPECT_THAT(
 | 
						|
      listener.str(),
 | 
						|
      Eq("where"
 | 
						|
         " the following matchers don't match any elements:\n"
 | 
						|
         "matcher #0: is equal to 1\n"
 | 
						|
         "and"
 | 
						|
         " where"
 | 
						|
         " the following elements don't match any matchers:\n"
 | 
						|
         "element #1: 3"));
 | 
						|
}
 | 
						|
 | 
						|
// Test helper for formatting element, matcher index pairs in expectations.
 | 
						|
static std::string EMString(int element, int matcher) {
 | 
						|
  stringstream ss;
 | 
						|
  ss << "(element #" << element << ", matcher #" << matcher << ")";
 | 
						|
  return ss.str();
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, FailMessageImperfectMatchOnly) {
 | 
						|
  // A situation where all elements and matchers have a match
 | 
						|
  // associated with them, but the max matching is not perfect.
 | 
						|
  std::vector<std::string> v;
 | 
						|
  v.push_back("a");
 | 
						|
  v.push_back("b");
 | 
						|
  v.push_back("c");
 | 
						|
  StringMatchResultListener listener;
 | 
						|
  EXPECT_FALSE(ExplainMatchResult(
 | 
						|
      UnorderedElementsAre("a", "a", AnyOf("b", "c")), v, &listener))
 | 
						|
      << listener.str();
 | 
						|
 | 
						|
  std::string prefix =
 | 
						|
      "where no permutation of the elements can satisfy all matchers, "
 | 
						|
      "and the closest match is 2 of 3 matchers with the "
 | 
						|
      "pairings:\n";
 | 
						|
 | 
						|
  // We have to be a bit loose here, because there are 4 valid max matches.
 | 
						|
  EXPECT_THAT(
 | 
						|
      listener.str(),
 | 
						|
      AnyOf(prefix + "{\n  " + EMString(0, 0) +
 | 
						|
                     ",\n  " + EMString(1, 2) + "\n}",
 | 
						|
            prefix + "{\n  " + EMString(0, 1) +
 | 
						|
                     ",\n  " + EMString(1, 2) + "\n}",
 | 
						|
            prefix + "{\n  " + EMString(0, 0) +
 | 
						|
                     ",\n  " + EMString(2, 2) + "\n}",
 | 
						|
            prefix + "{\n  " + EMString(0, 1) +
 | 
						|
                     ",\n  " + EMString(2, 2) + "\n}"));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, Describe) {
 | 
						|
  EXPECT_THAT(Describe<IntVec>(UnorderedElementsAre()),
 | 
						|
              Eq("is empty"));
 | 
						|
  EXPECT_THAT(
 | 
						|
      Describe<IntVec>(UnorderedElementsAre(345)),
 | 
						|
      Eq("has 1 element and that element is equal to 345"));
 | 
						|
  EXPECT_THAT(
 | 
						|
      Describe<IntVec>(UnorderedElementsAre(111, 222, 333)),
 | 
						|
      Eq("has 3 elements and there exists some permutation "
 | 
						|
         "of elements such that:\n"
 | 
						|
         " - element #0 is equal to 111, and\n"
 | 
						|
         " - element #1 is equal to 222, and\n"
 | 
						|
         " - element #2 is equal to 333"));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(UnorderedElementsAreTest, DescribeNegation) {
 | 
						|
  EXPECT_THAT(DescribeNegation<IntVec>(UnorderedElementsAre()),
 | 
						|
              Eq("isn't empty"));
 | 
						|
  EXPECT_THAT(
 | 
						|
      DescribeNegation<IntVec>(UnorderedElementsAre(345)),
 | 
						|
      Eq("doesn't have 1 element, or has 1 element that isn't equal to 345"));
 | 
						|
  EXPECT_THAT(
 | 
						|
      DescribeNegation<IntVec>(UnorderedElementsAre(123, 234, 345)),
 | 
						|
      Eq("doesn't have 3 elements, or there exists no permutation "
 | 
						|
         "of elements such that:\n"
 | 
						|
         " - element #0 is equal to 123, and\n"
 | 
						|
         " - element #1 is equal to 234, and\n"
 | 
						|
         " - element #2 is equal to 345"));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Used as a check on the more complex max flow method used in the
 | 
						|
// real testing::internal::FindMaxBipartiteMatching. This method is
 | 
						|
// compatible but runs in worst-case factorial time, so we only
 | 
						|
// use it in testing for small problem sizes.
 | 
						|
template <typename Graph>
 | 
						|
class BacktrackingMaxBPMState {
 | 
						|
 public:
 | 
						|
  // Does not take ownership of 'g'.
 | 
						|
  explicit BacktrackingMaxBPMState(const Graph* g) : graph_(g) { }
 | 
						|
 | 
						|
  ElementMatcherPairs Compute() {
 | 
						|
    if (graph_->LhsSize() == 0 || graph_->RhsSize() == 0) {
 | 
						|
      return best_so_far_;
 | 
						|
    }
 | 
						|
    lhs_used_.assign(graph_->LhsSize(), kUnused);
 | 
						|
    rhs_used_.assign(graph_->RhsSize(), kUnused);
 | 
						|
    for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
 | 
						|
      matches_.clear();
 | 
						|
      RecurseInto(irhs);
 | 
						|
      if (best_so_far_.size() == graph_->RhsSize())
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    return best_so_far_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  static const size_t kUnused = static_cast<size_t>(-1);
 | 
						|
 | 
						|
  void PushMatch(size_t lhs, size_t rhs) {
 | 
						|
    matches_.push_back(ElementMatcherPair(lhs, rhs));
 | 
						|
    lhs_used_[lhs] = rhs;
 | 
						|
    rhs_used_[rhs] = lhs;
 | 
						|
    if (matches_.size() > best_so_far_.size()) {
 | 
						|
      best_so_far_ = matches_;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void PopMatch() {
 | 
						|
    const ElementMatcherPair& back = matches_.back();
 | 
						|
    lhs_used_[back.first] = kUnused;
 | 
						|
    rhs_used_[back.second] = kUnused;
 | 
						|
    matches_.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
  bool RecurseInto(size_t irhs) {
 | 
						|
    if (rhs_used_[irhs] != kUnused) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
 | 
						|
      if (lhs_used_[ilhs] != kUnused) {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!graph_->HasEdge(ilhs, irhs)) {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      PushMatch(ilhs, irhs);
 | 
						|
      if (best_so_far_.size() == graph_->RhsSize()) {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      for (size_t mi = irhs + 1; mi < graph_->RhsSize(); ++mi) {
 | 
						|
        if (!RecurseInto(mi)) return false;
 | 
						|
      }
 | 
						|
      PopMatch();
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  const Graph* graph_;  // not owned
 | 
						|
  std::vector<size_t> lhs_used_;
 | 
						|
  std::vector<size_t> rhs_used_;
 | 
						|
  ElementMatcherPairs matches_;
 | 
						|
  ElementMatcherPairs best_so_far_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename Graph>
 | 
						|
const size_t BacktrackingMaxBPMState<Graph>::kUnused;
 | 
						|
 | 
						|
}  // namespace
 | 
						|
 | 
						|
// Implement a simple backtracking algorithm to determine if it is possible
 | 
						|
// to find one element per matcher, without reusing elements.
 | 
						|
template <typename Graph>
 | 
						|
ElementMatcherPairs
 | 
						|
FindBacktrackingMaxBPM(const Graph& g) {
 | 
						|
  return BacktrackingMaxBPMState<Graph>(&g).Compute();
 | 
						|
}
 | 
						|
 | 
						|
class BacktrackingBPMTest : public ::testing::Test { };
 | 
						|
 | 
						|
// Tests the MaxBipartiteMatching algorithm with square matrices.
 | 
						|
// The single int param is the # of nodes on each of the left and right sides.
 | 
						|
class BipartiteTest : public ::testing::TestWithParam<int> { };
 | 
						|
 | 
						|
// Verify all match graphs up to some moderate number of edges.
 | 
						|
TEST_P(BipartiteTest, Exhaustive) {
 | 
						|
  int nodes = GetParam();
 | 
						|
  MatchMatrix graph(nodes, nodes);
 | 
						|
  do {
 | 
						|
    ElementMatcherPairs matches =
 | 
						|
        internal::FindMaxBipartiteMatching(graph);
 | 
						|
    EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), matches.size())
 | 
						|
        << "graph: " << graph.DebugString();
 | 
						|
    // Check that all elements of matches are in the graph.
 | 
						|
    // Check that elements of first and second are unique.
 | 
						|
    std::vector<bool> seen_element(graph.LhsSize());
 | 
						|
    std::vector<bool> seen_matcher(graph.RhsSize());
 | 
						|
    SCOPED_TRACE(PrintToString(matches));
 | 
						|
    for (size_t i = 0; i < matches.size(); ++i) {
 | 
						|
      size_t ilhs = matches[i].first;
 | 
						|
      size_t irhs = matches[i].second;
 | 
						|
      EXPECT_TRUE(graph.HasEdge(ilhs, irhs));
 | 
						|
      EXPECT_FALSE(seen_element[ilhs]);
 | 
						|
      EXPECT_FALSE(seen_matcher[irhs]);
 | 
						|
      seen_element[ilhs] = true;
 | 
						|
      seen_matcher[irhs] = true;
 | 
						|
    }
 | 
						|
  } while (graph.NextGraph());
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(AllGraphs, BipartiteTest,
 | 
						|
                        ::testing::Range(0, 5));
 | 
						|
 | 
						|
// Parameterized by a pair interpreted as (LhsSize, RhsSize).
 | 
						|
class BipartiteNonSquareTest
 | 
						|
    : public ::testing::TestWithParam<std::pair<size_t, size_t> > {
 | 
						|
};
 | 
						|
 | 
						|
TEST_F(BipartiteNonSquareTest, SimpleBacktracking) {
 | 
						|
  //   .......
 | 
						|
  // 0:-----\ :
 | 
						|
  // 1:---\ | :
 | 
						|
  // 2:---\ | :
 | 
						|
  // 3:-\ | | :
 | 
						|
  //  :.......:
 | 
						|
  //    0 1 2
 | 
						|
  MatchMatrix g(4, 3);
 | 
						|
  static const int kEdges[][2] = {{0, 2}, {1, 1}, {2, 1}, {3, 0}};
 | 
						|
  for (size_t i = 0; i < GTEST_ARRAY_SIZE_(kEdges); ++i) {
 | 
						|
    g.SetEdge(kEdges[i][0], kEdges[i][1], true);
 | 
						|
  }
 | 
						|
  EXPECT_THAT(FindBacktrackingMaxBPM(g),
 | 
						|
              ElementsAre(Pair(3, 0),
 | 
						|
                          Pair(AnyOf(1, 2), 1),
 | 
						|
                          Pair(0, 2))) << g.DebugString();
 | 
						|
}
 | 
						|
 | 
						|
// Verify a few nonsquare matrices.
 | 
						|
TEST_P(BipartiteNonSquareTest, Exhaustive) {
 | 
						|
  size_t nlhs = GetParam().first;
 | 
						|
  size_t nrhs = GetParam().second;
 | 
						|
  MatchMatrix graph(nlhs, nrhs);
 | 
						|
  do {
 | 
						|
    EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(),
 | 
						|
              internal::FindMaxBipartiteMatching(graph).size())
 | 
						|
        << "graph: " << graph.DebugString()
 | 
						|
        << "\nbacktracking: "
 | 
						|
        << PrintToString(FindBacktrackingMaxBPM(graph))
 | 
						|
        << "\nmax flow: "
 | 
						|
        << PrintToString(internal::FindMaxBipartiteMatching(graph));
 | 
						|
  } while (graph.NextGraph());
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(AllGraphs, BipartiteNonSquareTest,
 | 
						|
    testing::Values(
 | 
						|
        std::make_pair(1, 2),
 | 
						|
        std::make_pair(2, 1),
 | 
						|
        std::make_pair(3, 2),
 | 
						|
        std::make_pair(2, 3),
 | 
						|
        std::make_pair(4, 1),
 | 
						|
        std::make_pair(1, 4),
 | 
						|
        std::make_pair(4, 3),
 | 
						|
        std::make_pair(3, 4)));
 | 
						|
 | 
						|
class BipartiteRandomTest
 | 
						|
    : public ::testing::TestWithParam<std::pair<int, int> > {
 | 
						|
};
 | 
						|
 | 
						|
// Verifies a large sample of larger graphs.
 | 
						|
TEST_P(BipartiteRandomTest, LargerNets) {
 | 
						|
  int nodes = GetParam().first;
 | 
						|
  int iters = GetParam().second;
 | 
						|
  MatchMatrix graph(nodes, nodes);
 | 
						|
 | 
						|
  testing::internal::Int32 seed = GTEST_FLAG(random_seed);
 | 
						|
  if (seed == 0) {
 | 
						|
    seed = static_cast<testing::internal::Int32>(time(NULL));
 | 
						|
  }
 | 
						|
 | 
						|
  for (; iters > 0; --iters, ++seed) {
 | 
						|
    srand(static_cast<int>(seed));
 | 
						|
    graph.Randomize();
 | 
						|
    EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(),
 | 
						|
              internal::FindMaxBipartiteMatching(graph).size())
 | 
						|
        << " graph: " << graph.DebugString()
 | 
						|
        << "\nTo reproduce the failure, rerun the test with the flag"
 | 
						|
           " --" << GTEST_FLAG_PREFIX_ << "random_seed=" << seed;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Test argument is a std::pair<int, int> representing (nodes, iters).
 | 
						|
INSTANTIATE_TEST_CASE_P(Samples, BipartiteRandomTest,
 | 
						|
    testing::Values(
 | 
						|
        std::make_pair(5, 10000),
 | 
						|
        std::make_pair(6, 5000),
 | 
						|
        std::make_pair(7, 2000),
 | 
						|
        std::make_pair(8, 500),
 | 
						|
        std::make_pair(9, 100)));
 | 
						|
 | 
						|
// Tests IsReadableTypeName().
 | 
						|
 | 
						|
TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) {
 | 
						|
  EXPECT_TRUE(IsReadableTypeName("int"));
 | 
						|
  EXPECT_TRUE(IsReadableTypeName("const unsigned char*"));
 | 
						|
  EXPECT_TRUE(IsReadableTypeName("MyMap<int, void*>"));
 | 
						|
  EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) {
 | 
						|
  EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName"));
 | 
						|
  EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]"));
 | 
						|
  EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) {
 | 
						|
  EXPECT_FALSE(
 | 
						|
      IsReadableTypeName("basic_string<char, std::char_traits<char> >"));
 | 
						|
  EXPECT_FALSE(IsReadableTypeName("std::vector<int, std::alloc_traits<int> >"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) {
 | 
						|
  EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)"));
 | 
						|
}
 | 
						|
 | 
						|
// Tests FormatMatcherDescription().
 | 
						|
 | 
						|
TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) {
 | 
						|
  EXPECT_EQ("is even",
 | 
						|
            FormatMatcherDescription(false, "IsEven", Strings()));
 | 
						|
  EXPECT_EQ("not (is even)",
 | 
						|
            FormatMatcherDescription(true, "IsEven", Strings()));
 | 
						|
 | 
						|
  const char* params[] = {"5"};
 | 
						|
  EXPECT_EQ("equals 5",
 | 
						|
            FormatMatcherDescription(false, "Equals",
 | 
						|
                                     Strings(params, params + 1)));
 | 
						|
 | 
						|
  const char* params2[] = {"5", "8"};
 | 
						|
  EXPECT_EQ("is in range (5, 8)",
 | 
						|
            FormatMatcherDescription(false, "IsInRange",
 | 
						|
                                     Strings(params2, params2 + 2)));
 | 
						|
}
 | 
						|
 | 
						|
// Tests PolymorphicMatcher::mutable_impl().
 | 
						|
TEST(PolymorphicMatcherTest, CanAccessMutableImpl) {
 | 
						|
  PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
 | 
						|
  DivisibleByImpl& impl = m.mutable_impl();
 | 
						|
  EXPECT_EQ(42, impl.divider());
 | 
						|
 | 
						|
  impl.set_divider(0);
 | 
						|
  EXPECT_EQ(0, m.mutable_impl().divider());
 | 
						|
}
 | 
						|
 | 
						|
// Tests PolymorphicMatcher::impl().
 | 
						|
TEST(PolymorphicMatcherTest, CanAccessImpl) {
 | 
						|
  const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
 | 
						|
  const DivisibleByImpl& impl = m.impl();
 | 
						|
  EXPECT_EQ(42, impl.divider());
 | 
						|
}
 | 
						|
 | 
						|
TEST(MatcherTupleTest, ExplainsMatchFailure) {
 | 
						|
  stringstream ss1;
 | 
						|
  ExplainMatchFailureTupleTo(make_tuple(Matcher<char>(Eq('a')), GreaterThan(5)),
 | 
						|
                             make_tuple('a', 10), &ss1);
 | 
						|
  EXPECT_EQ("", ss1.str());  // Successful match.
 | 
						|
 | 
						|
  stringstream ss2;
 | 
						|
  ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))),
 | 
						|
                             make_tuple(2, 'b'), &ss2);
 | 
						|
  EXPECT_EQ("  Expected arg #0: is > 5\n"
 | 
						|
            "           Actual: 2, which is 3 less than 5\n"
 | 
						|
            "  Expected arg #1: is equal to 'a' (97, 0x61)\n"
 | 
						|
            "           Actual: 'b' (98, 0x62)\n",
 | 
						|
            ss2.str());  // Failed match where both arguments need explanation.
 | 
						|
 | 
						|
  stringstream ss3;
 | 
						|
  ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))),
 | 
						|
                             make_tuple(2, 'a'), &ss3);
 | 
						|
  EXPECT_EQ("  Expected arg #0: is > 5\n"
 | 
						|
            "           Actual: 2, which is 3 less than 5\n",
 | 
						|
            ss3.str());  // Failed match where only one argument needs
 | 
						|
                         // explanation.
 | 
						|
}
 | 
						|
 | 
						|
// Tests Each().
 | 
						|
 | 
						|
TEST(EachTest, ExplainsMatchResultCorrectly) {
 | 
						|
  set<int> a;  // empty
 | 
						|
 | 
						|
  Matcher<set<int> > m = Each(2);
 | 
						|
  EXPECT_EQ("", Explain(m, a));
 | 
						|
 | 
						|
  Matcher<const int(&)[1]> n = Each(1);  // NOLINT
 | 
						|
 | 
						|
  const int b[1] = {1};
 | 
						|
  EXPECT_EQ("", Explain(n, b));
 | 
						|
 | 
						|
  n = Each(3);
 | 
						|
  EXPECT_EQ("whose element #0 doesn't match", Explain(n, b));
 | 
						|
 | 
						|
  a.insert(1);
 | 
						|
  a.insert(2);
 | 
						|
  a.insert(3);
 | 
						|
  m = Each(GreaterThan(0));
 | 
						|
  EXPECT_EQ("", Explain(m, a));
 | 
						|
 | 
						|
  m = Each(GreaterThan(10));
 | 
						|
  EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10",
 | 
						|
            Explain(m, a));
 | 
						|
}
 | 
						|
 | 
						|
TEST(EachTest, DescribesItselfCorrectly) {
 | 
						|
  Matcher<vector<int> > m = Each(1);
 | 
						|
  EXPECT_EQ("only contains elements that is equal to 1", Describe(m));
 | 
						|
 | 
						|
  Matcher<vector<int> > m2 = Not(m);
 | 
						|
  EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2));
 | 
						|
}
 | 
						|
 | 
						|
TEST(EachTest, MatchesVectorWhenAllElementsMatch) {
 | 
						|
  vector<int> some_vector;
 | 
						|
  EXPECT_THAT(some_vector, Each(1));
 | 
						|
  some_vector.push_back(3);
 | 
						|
  EXPECT_THAT(some_vector, Not(Each(1)));
 | 
						|
  EXPECT_THAT(some_vector, Each(3));
 | 
						|
  some_vector.push_back(1);
 | 
						|
  some_vector.push_back(2);
 | 
						|
  EXPECT_THAT(some_vector, Not(Each(3)));
 | 
						|
  EXPECT_THAT(some_vector, Each(Lt(3.5)));
 | 
						|
 | 
						|
  vector<std::string> another_vector;
 | 
						|
  another_vector.push_back("fee");
 | 
						|
  EXPECT_THAT(another_vector, Each(std::string("fee")));
 | 
						|
  another_vector.push_back("fie");
 | 
						|
  another_vector.push_back("foe");
 | 
						|
  another_vector.push_back("fum");
 | 
						|
  EXPECT_THAT(another_vector, Not(Each(std::string("fee"))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(EachTest, MatchesMapWhenAllElementsMatch) {
 | 
						|
  map<const char*, int> my_map;
 | 
						|
  const char* bar = "a string";
 | 
						|
  my_map[bar] = 2;
 | 
						|
  EXPECT_THAT(my_map, Each(make_pair(bar, 2)));
 | 
						|
 | 
						|
  map<std::string, int> another_map;
 | 
						|
  EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1)));
 | 
						|
  another_map["fee"] = 1;
 | 
						|
  EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1)));
 | 
						|
  another_map["fie"] = 2;
 | 
						|
  another_map["foe"] = 3;
 | 
						|
  another_map["fum"] = 4;
 | 
						|
  EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fee"), 1))));
 | 
						|
  EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fum"), 1))));
 | 
						|
  EXPECT_THAT(another_map, Each(Pair(_, Gt(0))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(EachTest, AcceptsMatcher) {
 | 
						|
  const int a[] = {1, 2, 3};
 | 
						|
  EXPECT_THAT(a, Each(Gt(0)));
 | 
						|
  EXPECT_THAT(a, Not(Each(Gt(1))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(EachTest, WorksForNativeArrayAsTuple) {
 | 
						|
  const int a[] = {1, 2};
 | 
						|
  const int* const pointer = a;
 | 
						|
  EXPECT_THAT(make_tuple(pointer, 2), Each(Gt(0)));
 | 
						|
  EXPECT_THAT(make_tuple(pointer, 2), Not(Each(Gt(1))));
 | 
						|
}
 | 
						|
 | 
						|
// For testing Pointwise().
 | 
						|
class IsHalfOfMatcher {
 | 
						|
 public:
 | 
						|
  template <typename T1, typename T2>
 | 
						|
  bool MatchAndExplain(const tuple<T1, T2>& a_pair,
 | 
						|
                       MatchResultListener* listener) const {
 | 
						|
    if (get<0>(a_pair) == get<1>(a_pair)/2) {
 | 
						|
      *listener << "where the second is " << get<1>(a_pair);
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      *listener << "where the second/2 is " << get<1>(a_pair)/2;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void DescribeTo(ostream* os) const {
 | 
						|
    *os << "are a pair where the first is half of the second";
 | 
						|
  }
 | 
						|
 | 
						|
  void DescribeNegationTo(ostream* os) const {
 | 
						|
    *os << "are a pair where the first isn't half of the second";
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
PolymorphicMatcher<IsHalfOfMatcher> IsHalfOf() {
 | 
						|
  return MakePolymorphicMatcher(IsHalfOfMatcher());
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointwiseTest, DescribesSelf) {
 | 
						|
  vector<int> rhs;
 | 
						|
  rhs.push_back(1);
 | 
						|
  rhs.push_back(2);
 | 
						|
  rhs.push_back(3);
 | 
						|
  const Matcher<const vector<int>&> m = Pointwise(IsHalfOf(), rhs);
 | 
						|
  EXPECT_EQ("contains 3 values, where each value and its corresponding value "
 | 
						|
            "in { 1, 2, 3 } are a pair where the first is half of the second",
 | 
						|
            Describe(m));
 | 
						|
  EXPECT_EQ("doesn't contain exactly 3 values, or contains a value x at some "
 | 
						|
            "index i where x and the i-th value of { 1, 2, 3 } are a pair "
 | 
						|
            "where the first isn't half of the second",
 | 
						|
            DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointwiseTest, MakesCopyOfRhs) {
 | 
						|
  list<signed char> rhs;
 | 
						|
  rhs.push_back(2);
 | 
						|
  rhs.push_back(4);
 | 
						|
 | 
						|
  int lhs[] = {1, 2};
 | 
						|
  const Matcher<const int (&)[2]> m = Pointwise(IsHalfOf(), rhs);
 | 
						|
  EXPECT_THAT(lhs, m);
 | 
						|
 | 
						|
  // Changing rhs now shouldn't affect m, which made a copy of rhs.
 | 
						|
  rhs.push_back(6);
 | 
						|
  EXPECT_THAT(lhs, m);
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointwiseTest, WorksForLhsNativeArray) {
 | 
						|
  const int lhs[] = {1, 2, 3};
 | 
						|
  vector<int> rhs;
 | 
						|
  rhs.push_back(2);
 | 
						|
  rhs.push_back(4);
 | 
						|
  rhs.push_back(6);
 | 
						|
  EXPECT_THAT(lhs, Pointwise(Lt(), rhs));
 | 
						|
  EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointwiseTest, WorksForRhsNativeArray) {
 | 
						|
  const int rhs[] = {1, 2, 3};
 | 
						|
  vector<int> lhs;
 | 
						|
  lhs.push_back(2);
 | 
						|
  lhs.push_back(4);
 | 
						|
  lhs.push_back(6);
 | 
						|
  EXPECT_THAT(lhs, Pointwise(Gt(), rhs));
 | 
						|
  EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs)));
 | 
						|
}
 | 
						|
 | 
						|
// Test is effective only with sanitizers.
 | 
						|
TEST(PointwiseTest, WorksForVectorOfBool) {
 | 
						|
  vector<bool> rhs(3, false);
 | 
						|
  rhs[1] = true;
 | 
						|
  vector<bool> lhs = rhs;
 | 
						|
  EXPECT_THAT(lhs, Pointwise(Eq(), rhs));
 | 
						|
  rhs[0] = true;
 | 
						|
  EXPECT_THAT(lhs, Not(Pointwise(Eq(), rhs)));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_HAS_STD_INITIALIZER_LIST_
 | 
						|
 | 
						|
TEST(PointwiseTest, WorksForRhsInitializerList) {
 | 
						|
  const vector<int> lhs{2, 4, 6};
 | 
						|
  EXPECT_THAT(lhs, Pointwise(Gt(), {1, 2, 3}));
 | 
						|
  EXPECT_THAT(lhs, Not(Pointwise(Lt(), {3, 3, 7})));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // GTEST_HAS_STD_INITIALIZER_LIST_
 | 
						|
 | 
						|
TEST(PointwiseTest, RejectsWrongSize) {
 | 
						|
  const double lhs[2] = {1, 2};
 | 
						|
  const int rhs[1] = {0};
 | 
						|
  EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs)));
 | 
						|
  EXPECT_EQ("which contains 2 values",
 | 
						|
            Explain(Pointwise(Gt(), rhs), lhs));
 | 
						|
 | 
						|
  const int rhs2[3] = {0, 1, 2};
 | 
						|
  EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointwiseTest, RejectsWrongContent) {
 | 
						|
  const double lhs[3] = {1, 2, 3};
 | 
						|
  const int rhs[3] = {2, 6, 4};
 | 
						|
  EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs)));
 | 
						|
  EXPECT_EQ("where the value pair (2, 6) at index #1 don't match, "
 | 
						|
            "where the second/2 is 3",
 | 
						|
            Explain(Pointwise(IsHalfOf(), rhs), lhs));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointwiseTest, AcceptsCorrectContent) {
 | 
						|
  const double lhs[3] = {1, 2, 3};
 | 
						|
  const int rhs[3] = {2, 4, 6};
 | 
						|
  EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs));
 | 
						|
  EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs));
 | 
						|
}
 | 
						|
 | 
						|
TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) {
 | 
						|
  const double lhs[3] = {1, 2, 3};
 | 
						|
  const int rhs[3] = {2, 4, 6};
 | 
						|
  const Matcher<tuple<const double&, const int&> > m1 = IsHalfOf();
 | 
						|
  EXPECT_THAT(lhs, Pointwise(m1, rhs));
 | 
						|
  EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs));
 | 
						|
 | 
						|
  // This type works as a tuple<const double&, const int&> can be
 | 
						|
  // implicitly cast to tuple<double, int>.
 | 
						|
  const Matcher<tuple<double, int> > m2 = IsHalfOf();
 | 
						|
  EXPECT_THAT(lhs, Pointwise(m2, rhs));
 | 
						|
  EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedPointwiseTest, DescribesSelf) {
 | 
						|
  vector<int> rhs;
 | 
						|
  rhs.push_back(1);
 | 
						|
  rhs.push_back(2);
 | 
						|
  rhs.push_back(3);
 | 
						|
  const Matcher<const vector<int>&> m = UnorderedPointwise(IsHalfOf(), rhs);
 | 
						|
  EXPECT_EQ(
 | 
						|
      "has 3 elements and there exists some permutation of elements such "
 | 
						|
      "that:\n"
 | 
						|
      " - element #0 and 1 are a pair where the first is half of the second, "
 | 
						|
      "and\n"
 | 
						|
      " - element #1 and 2 are a pair where the first is half of the second, "
 | 
						|
      "and\n"
 | 
						|
      " - element #2 and 3 are a pair where the first is half of the second",
 | 
						|
      Describe(m));
 | 
						|
  EXPECT_EQ(
 | 
						|
      "doesn't have 3 elements, or there exists no permutation of elements "
 | 
						|
      "such that:\n"
 | 
						|
      " - element #0 and 1 are a pair where the first is half of the second, "
 | 
						|
      "and\n"
 | 
						|
      " - element #1 and 2 are a pair where the first is half of the second, "
 | 
						|
      "and\n"
 | 
						|
      " - element #2 and 3 are a pair where the first is half of the second",
 | 
						|
      DescribeNegation(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedPointwiseTest, MakesCopyOfRhs) {
 | 
						|
  list<signed char> rhs;
 | 
						|
  rhs.push_back(2);
 | 
						|
  rhs.push_back(4);
 | 
						|
 | 
						|
  int lhs[] = {2, 1};
 | 
						|
  const Matcher<const int (&)[2]> m = UnorderedPointwise(IsHalfOf(), rhs);
 | 
						|
  EXPECT_THAT(lhs, m);
 | 
						|
 | 
						|
  // Changing rhs now shouldn't affect m, which made a copy of rhs.
 | 
						|
  rhs.push_back(6);
 | 
						|
  EXPECT_THAT(lhs, m);
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedPointwiseTest, WorksForLhsNativeArray) {
 | 
						|
  const int lhs[] = {1, 2, 3};
 | 
						|
  vector<int> rhs;
 | 
						|
  rhs.push_back(4);
 | 
						|
  rhs.push_back(6);
 | 
						|
  rhs.push_back(2);
 | 
						|
  EXPECT_THAT(lhs, UnorderedPointwise(Lt(), rhs));
 | 
						|
  EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedPointwiseTest, WorksForRhsNativeArray) {
 | 
						|
  const int rhs[] = {1, 2, 3};
 | 
						|
  vector<int> lhs;
 | 
						|
  lhs.push_back(4);
 | 
						|
  lhs.push_back(2);
 | 
						|
  lhs.push_back(6);
 | 
						|
  EXPECT_THAT(lhs, UnorderedPointwise(Gt(), rhs));
 | 
						|
  EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), rhs)));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_HAS_STD_INITIALIZER_LIST_
 | 
						|
 | 
						|
TEST(UnorderedPointwiseTest, WorksForRhsInitializerList) {
 | 
						|
  const vector<int> lhs{2, 4, 6};
 | 
						|
  EXPECT_THAT(lhs, UnorderedPointwise(Gt(), {5, 1, 3}));
 | 
						|
  EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), {1, 1, 7})));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // GTEST_HAS_STD_INITIALIZER_LIST_
 | 
						|
 | 
						|
TEST(UnorderedPointwiseTest, RejectsWrongSize) {
 | 
						|
  const double lhs[2] = {1, 2};
 | 
						|
  const int rhs[1] = {0};
 | 
						|
  EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs)));
 | 
						|
  EXPECT_EQ("which has 2 elements",
 | 
						|
            Explain(UnorderedPointwise(Gt(), rhs), lhs));
 | 
						|
 | 
						|
  const int rhs2[3] = {0, 1, 2};
 | 
						|
  EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs2)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedPointwiseTest, RejectsWrongContent) {
 | 
						|
  const double lhs[3] = {1, 2, 3};
 | 
						|
  const int rhs[3] = {2, 6, 6};
 | 
						|
  EXPECT_THAT(lhs, Not(UnorderedPointwise(IsHalfOf(), rhs)));
 | 
						|
  EXPECT_EQ("where the following elements don't match any matchers:\n"
 | 
						|
            "element #1: 2",
 | 
						|
            Explain(UnorderedPointwise(IsHalfOf(), rhs), lhs));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedPointwiseTest, AcceptsCorrectContentInSameOrder) {
 | 
						|
  const double lhs[3] = {1, 2, 3};
 | 
						|
  const int rhs[3] = {2, 4, 6};
 | 
						|
  EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedPointwiseTest, AcceptsCorrectContentInDifferentOrder) {
 | 
						|
  const double lhs[3] = {1, 2, 3};
 | 
						|
  const int rhs[3] = {6, 4, 2};
 | 
						|
  EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs));
 | 
						|
}
 | 
						|
 | 
						|
TEST(UnorderedPointwiseTest, AllowsMonomorphicInnerMatcher) {
 | 
						|
  const double lhs[3] = {1, 2, 3};
 | 
						|
  const int rhs[3] = {4, 6, 2};
 | 
						|
  const Matcher<tuple<const double&, const int&> > m1 = IsHalfOf();
 | 
						|
  EXPECT_THAT(lhs, UnorderedPointwise(m1, rhs));
 | 
						|
 | 
						|
  // This type works as a tuple<const double&, const int&> can be
 | 
						|
  // implicitly cast to tuple<double, int>.
 | 
						|
  const Matcher<tuple<double, int> > m2 = IsHalfOf();
 | 
						|
  EXPECT_THAT(lhs, UnorderedPointwise(m2, rhs));
 | 
						|
}
 | 
						|
 | 
						|
// Sample optional type implementation with minimal requirements for use with
 | 
						|
// Optional matcher.
 | 
						|
class SampleOptionalInt {
 | 
						|
 public:
 | 
						|
  typedef int value_type;
 | 
						|
  explicit SampleOptionalInt(int value) : value_(value), has_value_(true) {}
 | 
						|
  SampleOptionalInt() : value_(0), has_value_(false) {}
 | 
						|
  operator bool() const {
 | 
						|
    return has_value_;
 | 
						|
  }
 | 
						|
  const int& operator*() const {
 | 
						|
    return value_;
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  int value_;
 | 
						|
  bool has_value_;
 | 
						|
};
 | 
						|
 | 
						|
TEST(OptionalTest, DescribesSelf) {
 | 
						|
  const Matcher<SampleOptionalInt> m = Optional(Eq(1));
 | 
						|
  EXPECT_EQ("value is equal to 1", Describe(m));
 | 
						|
}
 | 
						|
 | 
						|
TEST(OptionalTest, ExplainsSelf) {
 | 
						|
  const Matcher<SampleOptionalInt> m = Optional(Eq(1));
 | 
						|
  EXPECT_EQ("whose value 1 matches", Explain(m, SampleOptionalInt(1)));
 | 
						|
  EXPECT_EQ("whose value 2 doesn't match", Explain(m, SampleOptionalInt(2)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(OptionalTest, MatchesNonEmptyOptional) {
 | 
						|
  const Matcher<SampleOptionalInt> m1 = Optional(1);
 | 
						|
  const Matcher<SampleOptionalInt> m2 = Optional(Eq(2));
 | 
						|
  const Matcher<SampleOptionalInt> m3 = Optional(Lt(3));
 | 
						|
  SampleOptionalInt opt(1);
 | 
						|
  EXPECT_TRUE(m1.Matches(opt));
 | 
						|
  EXPECT_FALSE(m2.Matches(opt));
 | 
						|
  EXPECT_TRUE(m3.Matches(opt));
 | 
						|
}
 | 
						|
 | 
						|
TEST(OptionalTest, DoesNotMatchNullopt) {
 | 
						|
  const Matcher<SampleOptionalInt> m = Optional(1);
 | 
						|
  SampleOptionalInt empty;
 | 
						|
  EXPECT_FALSE(m.Matches(empty));
 | 
						|
}
 | 
						|
 | 
						|
class SampleVariantIntString {
 | 
						|
 public:
 | 
						|
  SampleVariantIntString(int i) : i_(i), has_int_(true) {}
 | 
						|
  SampleVariantIntString(const std::string& s) : s_(s), has_int_(false) {}
 | 
						|
 | 
						|
  template <typename T>
 | 
						|
  friend bool holds_alternative(const SampleVariantIntString& value) {
 | 
						|
    return value.has_int_ == internal::IsSame<T, int>::value;
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename T>
 | 
						|
  friend const T& get(const SampleVariantIntString& value) {
 | 
						|
    return value.get_impl(static_cast<T*>(NULL));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  const int& get_impl(int*) const { return i_; }
 | 
						|
  const std::string& get_impl(std::string*) const { return s_; }
 | 
						|
 | 
						|
  int i_;
 | 
						|
  std::string s_;
 | 
						|
  bool has_int_;
 | 
						|
};
 | 
						|
 | 
						|
TEST(VariantTest, DescribesSelf) {
 | 
						|
  const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1));
 | 
						|
  EXPECT_THAT(Describe(m), ContainsRegex("is a variant<> with value of type "
 | 
						|
                                         "'.*' and the value is equal to 1"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(VariantTest, ExplainsSelf) {
 | 
						|
  const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1));
 | 
						|
  EXPECT_THAT(Explain(m, SampleVariantIntString(1)),
 | 
						|
              ContainsRegex("whose value 1"));
 | 
						|
  EXPECT_THAT(Explain(m, SampleVariantIntString("A")),
 | 
						|
              HasSubstr("whose value is not of type '"));
 | 
						|
  EXPECT_THAT(Explain(m, SampleVariantIntString(2)),
 | 
						|
              "whose value 2 doesn't match");
 | 
						|
}
 | 
						|
 | 
						|
TEST(VariantTest, FullMatch) {
 | 
						|
  Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1));
 | 
						|
  EXPECT_TRUE(m.Matches(SampleVariantIntString(1)));
 | 
						|
 | 
						|
  m = VariantWith<std::string>(Eq("1"));
 | 
						|
  EXPECT_TRUE(m.Matches(SampleVariantIntString("1")));
 | 
						|
}
 | 
						|
 | 
						|
TEST(VariantTest, TypeDoesNotMatch) {
 | 
						|
  Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1));
 | 
						|
  EXPECT_FALSE(m.Matches(SampleVariantIntString("1")));
 | 
						|
 | 
						|
  m = VariantWith<std::string>(Eq("1"));
 | 
						|
  EXPECT_FALSE(m.Matches(SampleVariantIntString(1)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(VariantTest, InnerDoesNotMatch) {
 | 
						|
  Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1));
 | 
						|
  EXPECT_FALSE(m.Matches(SampleVariantIntString(2)));
 | 
						|
 | 
						|
  m = VariantWith<std::string>(Eq("1"));
 | 
						|
  EXPECT_FALSE(m.Matches(SampleVariantIntString("2")));
 | 
						|
}
 | 
						|
 | 
						|
class SampleAnyType {
 | 
						|
 public:
 | 
						|
  explicit SampleAnyType(int i) : index_(0), i_(i) {}
 | 
						|
  explicit SampleAnyType(const std::string& s) : index_(1), s_(s) {}
 | 
						|
 | 
						|
  template <typename T>
 | 
						|
  friend const T* any_cast(const SampleAnyType* any) {
 | 
						|
    return any->get_impl(static_cast<T*>(NULL));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  int index_;
 | 
						|
  int i_;
 | 
						|
  std::string s_;
 | 
						|
 | 
						|
  const int* get_impl(int*) const { return index_ == 0 ? &i_ : NULL; }
 | 
						|
  const std::string* get_impl(std::string*) const {
 | 
						|
    return index_ == 1 ? &s_ : NULL;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
TEST(AnyWithTest, FullMatch) {
 | 
						|
  Matcher<SampleAnyType> m = AnyWith<int>(Eq(1));
 | 
						|
  EXPECT_TRUE(m.Matches(SampleAnyType(1)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(AnyWithTest, TestBadCastType) {
 | 
						|
  Matcher<SampleAnyType> m = AnyWith<std::string>(Eq("fail"));
 | 
						|
  EXPECT_FALSE(m.Matches(SampleAnyType(1)));
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
TEST(AnyWithTest, TestUseInContainers) {
 | 
						|
  std::vector<SampleAnyType> a;
 | 
						|
  a.emplace_back(1);
 | 
						|
  a.emplace_back(2);
 | 
						|
  a.emplace_back(3);
 | 
						|
  EXPECT_THAT(
 | 
						|
      a, ElementsAreArray({AnyWith<int>(1), AnyWith<int>(2), AnyWith<int>(3)}));
 | 
						|
 | 
						|
  std::vector<SampleAnyType> b;
 | 
						|
  b.emplace_back("hello");
 | 
						|
  b.emplace_back("merhaba");
 | 
						|
  b.emplace_back("salut");
 | 
						|
  EXPECT_THAT(b, ElementsAreArray({AnyWith<std::string>("hello"),
 | 
						|
                                   AnyWith<std::string>("merhaba"),
 | 
						|
                                   AnyWith<std::string>("salut")}));
 | 
						|
}
 | 
						|
#endif //  GTEST_LANG_CXX11
 | 
						|
TEST(AnyWithTest, TestCompare) {
 | 
						|
  EXPECT_THAT(SampleAnyType(1), AnyWith<int>(Gt(0)));
 | 
						|
}
 | 
						|
 | 
						|
TEST(AnyWithTest, DescribesSelf) {
 | 
						|
  const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1));
 | 
						|
  EXPECT_THAT(Describe(m), ContainsRegex("is an 'any' type with value of type "
 | 
						|
                                         "'.*' and the value is equal to 1"));
 | 
						|
}
 | 
						|
 | 
						|
TEST(AnyWithTest, ExplainsSelf) {
 | 
						|
  const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1));
 | 
						|
 | 
						|
  EXPECT_THAT(Explain(m, SampleAnyType(1)), ContainsRegex("whose value 1"));
 | 
						|
  EXPECT_THAT(Explain(m, SampleAnyType("A")),
 | 
						|
              HasSubstr("whose value is not of type '"));
 | 
						|
  EXPECT_THAT(Explain(m, SampleAnyType(2)), "whose value 2 doesn't match");
 | 
						|
}
 | 
						|
 | 
						|
#if GTEST_LANG_CXX11
 | 
						|
 | 
						|
TEST(PointeeTest, WorksOnMoveOnlyType) {
 | 
						|
  std::unique_ptr<int> p(new int(3));
 | 
						|
  EXPECT_THAT(p, Pointee(Eq(3)));
 | 
						|
  EXPECT_THAT(p, Not(Pointee(Eq(2))));
 | 
						|
}
 | 
						|
 | 
						|
TEST(NotTest, WorksOnMoveOnlyType) {
 | 
						|
  std::unique_ptr<int> p(new int(3));
 | 
						|
  EXPECT_THAT(p, Pointee(Eq(3)));
 | 
						|
  EXPECT_THAT(p, Not(Pointee(Eq(2))));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // GTEST_LANG_CXX11
 | 
						|
 | 
						|
}  // namespace gmock_matchers_test
 | 
						|
}  // namespace testing
 |