Fixes build warnings from previous CL Add CMake to internal presubmit to prevent these PiperOrigin-RevId: 337325504
		
			
				
	
	
		
			1570 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1570 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2005, Google Inc.
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//     * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//     * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//     * Neither the name of Google Inc. nor the names of its
 | 
						|
// contributors may be used to endorse or promote products derived from
 | 
						|
// this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
// The Google C++ Testing and Mocking Framework (Google Test)
 | 
						|
//
 | 
						|
// This header file declares functions and macros used internally by
 | 
						|
// Google Test.  They are subject to change without notice.
 | 
						|
 | 
						|
// GOOGLETEST_CM0001 DO NOT DELETE
 | 
						|
 | 
						|
#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
 | 
						|
#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
 | 
						|
 | 
						|
#include "gtest/internal/gtest-port.h"
 | 
						|
 | 
						|
#if GTEST_OS_LINUX
 | 
						|
# include <stdlib.h>
 | 
						|
# include <sys/types.h>
 | 
						|
# include <sys/wait.h>
 | 
						|
# include <unistd.h>
 | 
						|
#endif  // GTEST_OS_LINUX
 | 
						|
 | 
						|
#if GTEST_HAS_EXCEPTIONS
 | 
						|
# include <stdexcept>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <ctype.h>
 | 
						|
#include <float.h>
 | 
						|
#include <string.h>
 | 
						|
#include <cstdint>
 | 
						|
#include <iomanip>
 | 
						|
#include <limits>
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
#include <string>
 | 
						|
#include <type_traits>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include "gtest/gtest-message.h"
 | 
						|
#include "gtest/internal/gtest-filepath.h"
 | 
						|
#include "gtest/internal/gtest-string.h"
 | 
						|
#include "gtest/internal/gtest-type-util.h"
 | 
						|
 | 
						|
// Due to C++ preprocessor weirdness, we need double indirection to
 | 
						|
// concatenate two tokens when one of them is __LINE__.  Writing
 | 
						|
//
 | 
						|
//   foo ## __LINE__
 | 
						|
//
 | 
						|
// will result in the token foo__LINE__, instead of foo followed by
 | 
						|
// the current line number.  For more details, see
 | 
						|
// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
 | 
						|
#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
 | 
						|
#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
 | 
						|
 | 
						|
// Stringifies its argument.
 | 
						|
// Work around a bug in visual studio which doesn't accept code like this:
 | 
						|
//
 | 
						|
//   #define GTEST_STRINGIFY_(name) #name
 | 
						|
//   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
 | 
						|
//   MACRO(, x, y)
 | 
						|
//
 | 
						|
// Complaining about the argument to GTEST_STRINGIFY_ being empty.
 | 
						|
// This is allowed by the spec.
 | 
						|
#define GTEST_STRINGIFY_HELPER_(name, ...) #name
 | 
						|
#define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
 | 
						|
 | 
						|
namespace proto2 {
 | 
						|
class MessageLite;
 | 
						|
}
 | 
						|
 | 
						|
namespace testing {
 | 
						|
 | 
						|
// Forward declarations.
 | 
						|
 | 
						|
class AssertionResult;                 // Result of an assertion.
 | 
						|
class Message;                         // Represents a failure message.
 | 
						|
class Test;                            // Represents a test.
 | 
						|
class TestInfo;                        // Information about a test.
 | 
						|
class TestPartResult;                  // Result of a test part.
 | 
						|
class UnitTest;                        // A collection of test suites.
 | 
						|
 | 
						|
template <typename T>
 | 
						|
::std::string PrintToString(const T& value);
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
struct TraceInfo;                      // Information about a trace point.
 | 
						|
class TestInfoImpl;                    // Opaque implementation of TestInfo
 | 
						|
class UnitTestImpl;                    // Opaque implementation of UnitTest
 | 
						|
 | 
						|
// The text used in failure messages to indicate the start of the
 | 
						|
// stack trace.
 | 
						|
GTEST_API_ extern const char kStackTraceMarker[];
 | 
						|
 | 
						|
// An IgnoredValue object can be implicitly constructed from ANY value.
 | 
						|
class IgnoredValue {
 | 
						|
  struct Sink {};
 | 
						|
 public:
 | 
						|
  // This constructor template allows any value to be implicitly
 | 
						|
  // converted to IgnoredValue.  The object has no data member and
 | 
						|
  // doesn't try to remember anything about the argument.  We
 | 
						|
  // deliberately omit the 'explicit' keyword in order to allow the
 | 
						|
  // conversion to be implicit.
 | 
						|
  // Disable the conversion if T already has a magical conversion operator.
 | 
						|
  // Otherwise we get ambiguity.
 | 
						|
  template <typename T,
 | 
						|
            typename std::enable_if<!std::is_convertible<T, Sink>::value,
 | 
						|
                                    int>::type = 0>
 | 
						|
  IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
 | 
						|
};
 | 
						|
 | 
						|
// Appends the user-supplied message to the Google-Test-generated message.
 | 
						|
GTEST_API_ std::string AppendUserMessage(
 | 
						|
    const std::string& gtest_msg, const Message& user_msg);
 | 
						|
 | 
						|
#if GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
 | 
						|
/* an exported class was derived from a class that was not exported */)
 | 
						|
 | 
						|
// This exception is thrown by (and only by) a failed Google Test
 | 
						|
// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
 | 
						|
// are enabled).  We derive it from std::runtime_error, which is for
 | 
						|
// errors presumably detectable only at run time.  Since
 | 
						|
// std::runtime_error inherits from std::exception, many testing
 | 
						|
// frameworks know how to extract and print the message inside it.
 | 
						|
class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
 | 
						|
 public:
 | 
						|
  explicit GoogleTestFailureException(const TestPartResult& failure);
 | 
						|
};
 | 
						|
 | 
						|
GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
 | 
						|
 | 
						|
#endif  // GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
namespace edit_distance {
 | 
						|
// Returns the optimal edits to go from 'left' to 'right'.
 | 
						|
// All edits cost the same, with replace having lower priority than
 | 
						|
// add/remove.
 | 
						|
// Simple implementation of the Wagner-Fischer algorithm.
 | 
						|
// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
 | 
						|
enum EditType { kMatch, kAdd, kRemove, kReplace };
 | 
						|
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
 | 
						|
    const std::vector<size_t>& left, const std::vector<size_t>& right);
 | 
						|
 | 
						|
// Same as above, but the input is represented as strings.
 | 
						|
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
 | 
						|
    const std::vector<std::string>& left,
 | 
						|
    const std::vector<std::string>& right);
 | 
						|
 | 
						|
// Create a diff of the input strings in Unified diff format.
 | 
						|
GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
 | 
						|
                                         const std::vector<std::string>& right,
 | 
						|
                                         size_t context = 2);
 | 
						|
 | 
						|
}  // namespace edit_distance
 | 
						|
 | 
						|
// Calculate the diff between 'left' and 'right' and return it in unified diff
 | 
						|
// format.
 | 
						|
// If not null, stores in 'total_line_count' the total number of lines found
 | 
						|
// in left + right.
 | 
						|
GTEST_API_ std::string DiffStrings(const std::string& left,
 | 
						|
                                   const std::string& right,
 | 
						|
                                   size_t* total_line_count);
 | 
						|
 | 
						|
// Constructs and returns the message for an equality assertion
 | 
						|
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
 | 
						|
//
 | 
						|
// The first four parameters are the expressions used in the assertion
 | 
						|
// and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
 | 
						|
// where foo is 5 and bar is 6, we have:
 | 
						|
//
 | 
						|
//   expected_expression: "foo"
 | 
						|
//   actual_expression:   "bar"
 | 
						|
//   expected_value:      "5"
 | 
						|
//   actual_value:        "6"
 | 
						|
//
 | 
						|
// The ignoring_case parameter is true if and only if the assertion is a
 | 
						|
// *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
 | 
						|
// be inserted into the message.
 | 
						|
GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
 | 
						|
                                     const char* actual_expression,
 | 
						|
                                     const std::string& expected_value,
 | 
						|
                                     const std::string& actual_value,
 | 
						|
                                     bool ignoring_case);
 | 
						|
 | 
						|
// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
 | 
						|
GTEST_API_ std::string GetBoolAssertionFailureMessage(
 | 
						|
    const AssertionResult& assertion_result,
 | 
						|
    const char* expression_text,
 | 
						|
    const char* actual_predicate_value,
 | 
						|
    const char* expected_predicate_value);
 | 
						|
 | 
						|
// This template class represents an IEEE floating-point number
 | 
						|
// (either single-precision or double-precision, depending on the
 | 
						|
// template parameters).
 | 
						|
//
 | 
						|
// The purpose of this class is to do more sophisticated number
 | 
						|
// comparison.  (Due to round-off error, etc, it's very unlikely that
 | 
						|
// two floating-points will be equal exactly.  Hence a naive
 | 
						|
// comparison by the == operation often doesn't work.)
 | 
						|
//
 | 
						|
// Format of IEEE floating-point:
 | 
						|
//
 | 
						|
//   The most-significant bit being the leftmost, an IEEE
 | 
						|
//   floating-point looks like
 | 
						|
//
 | 
						|
//     sign_bit exponent_bits fraction_bits
 | 
						|
//
 | 
						|
//   Here, sign_bit is a single bit that designates the sign of the
 | 
						|
//   number.
 | 
						|
//
 | 
						|
//   For float, there are 8 exponent bits and 23 fraction bits.
 | 
						|
//
 | 
						|
//   For double, there are 11 exponent bits and 52 fraction bits.
 | 
						|
//
 | 
						|
//   More details can be found at
 | 
						|
//   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
 | 
						|
//
 | 
						|
// Template parameter:
 | 
						|
//
 | 
						|
//   RawType: the raw floating-point type (either float or double)
 | 
						|
template <typename RawType>
 | 
						|
class FloatingPoint {
 | 
						|
 public:
 | 
						|
  // Defines the unsigned integer type that has the same size as the
 | 
						|
  // floating point number.
 | 
						|
  typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
 | 
						|
 | 
						|
  // Constants.
 | 
						|
 | 
						|
  // # of bits in a number.
 | 
						|
  static const size_t kBitCount = 8*sizeof(RawType);
 | 
						|
 | 
						|
  // # of fraction bits in a number.
 | 
						|
  static const size_t kFractionBitCount =
 | 
						|
    std::numeric_limits<RawType>::digits - 1;
 | 
						|
 | 
						|
  // # of exponent bits in a number.
 | 
						|
  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
 | 
						|
 | 
						|
  // The mask for the sign bit.
 | 
						|
  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
 | 
						|
 | 
						|
  // The mask for the fraction bits.
 | 
						|
  static const Bits kFractionBitMask =
 | 
						|
    ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
 | 
						|
 | 
						|
  // The mask for the exponent bits.
 | 
						|
  static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
 | 
						|
 | 
						|
  // How many ULP's (Units in the Last Place) we want to tolerate when
 | 
						|
  // comparing two numbers.  The larger the value, the more error we
 | 
						|
  // allow.  A 0 value means that two numbers must be exactly the same
 | 
						|
  // to be considered equal.
 | 
						|
  //
 | 
						|
  // The maximum error of a single floating-point operation is 0.5
 | 
						|
  // units in the last place.  On Intel CPU's, all floating-point
 | 
						|
  // calculations are done with 80-bit precision, while double has 64
 | 
						|
  // bits.  Therefore, 4 should be enough for ordinary use.
 | 
						|
  //
 | 
						|
  // See the following article for more details on ULP:
 | 
						|
  // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
 | 
						|
  static const uint32_t kMaxUlps = 4;
 | 
						|
 | 
						|
  // Constructs a FloatingPoint from a raw floating-point number.
 | 
						|
  //
 | 
						|
  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
 | 
						|
  // around may change its bits, although the new value is guaranteed
 | 
						|
  // to be also a NAN.  Therefore, don't expect this constructor to
 | 
						|
  // preserve the bits in x when x is a NAN.
 | 
						|
  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
 | 
						|
 | 
						|
  // Static methods
 | 
						|
 | 
						|
  // Reinterprets a bit pattern as a floating-point number.
 | 
						|
  //
 | 
						|
  // This function is needed to test the AlmostEquals() method.
 | 
						|
  static RawType ReinterpretBits(const Bits bits) {
 | 
						|
    FloatingPoint fp(0);
 | 
						|
    fp.u_.bits_ = bits;
 | 
						|
    return fp.u_.value_;
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the floating-point number that represent positive infinity.
 | 
						|
  static RawType Infinity() {
 | 
						|
    return ReinterpretBits(kExponentBitMask);
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the maximum representable finite floating-point number.
 | 
						|
  static RawType Max();
 | 
						|
 | 
						|
  // Non-static methods
 | 
						|
 | 
						|
  // Returns the bits that represents this number.
 | 
						|
  const Bits &bits() const { return u_.bits_; }
 | 
						|
 | 
						|
  // Returns the exponent bits of this number.
 | 
						|
  Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
 | 
						|
 | 
						|
  // Returns the fraction bits of this number.
 | 
						|
  Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
 | 
						|
 | 
						|
  // Returns the sign bit of this number.
 | 
						|
  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
 | 
						|
 | 
						|
  // Returns true if and only if this is NAN (not a number).
 | 
						|
  bool is_nan() const {
 | 
						|
    // It's a NAN if the exponent bits are all ones and the fraction
 | 
						|
    // bits are not entirely zeros.
 | 
						|
    return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns true if and only if this number is at most kMaxUlps ULP's away
 | 
						|
  // from rhs.  In particular, this function:
 | 
						|
  //
 | 
						|
  //   - returns false if either number is (or both are) NAN.
 | 
						|
  //   - treats really large numbers as almost equal to infinity.
 | 
						|
  //   - thinks +0.0 and -0.0 are 0 DLP's apart.
 | 
						|
  bool AlmostEquals(const FloatingPoint& rhs) const {
 | 
						|
    // The IEEE standard says that any comparison operation involving
 | 
						|
    // a NAN must return false.
 | 
						|
    if (is_nan() || rhs.is_nan()) return false;
 | 
						|
 | 
						|
    return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
 | 
						|
        <= kMaxUlps;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // The data type used to store the actual floating-point number.
 | 
						|
  union FloatingPointUnion {
 | 
						|
    RawType value_;  // The raw floating-point number.
 | 
						|
    Bits bits_;      // The bits that represent the number.
 | 
						|
  };
 | 
						|
 | 
						|
  // Converts an integer from the sign-and-magnitude representation to
 | 
						|
  // the biased representation.  More precisely, let N be 2 to the
 | 
						|
  // power of (kBitCount - 1), an integer x is represented by the
 | 
						|
  // unsigned number x + N.
 | 
						|
  //
 | 
						|
  // For instance,
 | 
						|
  //
 | 
						|
  //   -N + 1 (the most negative number representable using
 | 
						|
  //          sign-and-magnitude) is represented by 1;
 | 
						|
  //   0      is represented by N; and
 | 
						|
  //   N - 1  (the biggest number representable using
 | 
						|
  //          sign-and-magnitude) is represented by 2N - 1.
 | 
						|
  //
 | 
						|
  // Read http://en.wikipedia.org/wiki/Signed_number_representations
 | 
						|
  // for more details on signed number representations.
 | 
						|
  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
 | 
						|
    if (kSignBitMask & sam) {
 | 
						|
      // sam represents a negative number.
 | 
						|
      return ~sam + 1;
 | 
						|
    } else {
 | 
						|
      // sam represents a positive number.
 | 
						|
      return kSignBitMask | sam;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Given two numbers in the sign-and-magnitude representation,
 | 
						|
  // returns the distance between them as an unsigned number.
 | 
						|
  static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
 | 
						|
                                                     const Bits &sam2) {
 | 
						|
    const Bits biased1 = SignAndMagnitudeToBiased(sam1);
 | 
						|
    const Bits biased2 = SignAndMagnitudeToBiased(sam2);
 | 
						|
    return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
 | 
						|
  }
 | 
						|
 | 
						|
  FloatingPointUnion u_;
 | 
						|
};
 | 
						|
 | 
						|
// We cannot use std::numeric_limits<T>::max() as it clashes with the max()
 | 
						|
// macro defined by <windows.h>.
 | 
						|
template <>
 | 
						|
inline float FloatingPoint<float>::Max() { return FLT_MAX; }
 | 
						|
template <>
 | 
						|
inline double FloatingPoint<double>::Max() { return DBL_MAX; }
 | 
						|
 | 
						|
// Typedefs the instances of the FloatingPoint template class that we
 | 
						|
// care to use.
 | 
						|
typedef FloatingPoint<float> Float;
 | 
						|
typedef FloatingPoint<double> Double;
 | 
						|
 | 
						|
// In order to catch the mistake of putting tests that use different
 | 
						|
// test fixture classes in the same test suite, we need to assign
 | 
						|
// unique IDs to fixture classes and compare them.  The TypeId type is
 | 
						|
// used to hold such IDs.  The user should treat TypeId as an opaque
 | 
						|
// type: the only operation allowed on TypeId values is to compare
 | 
						|
// them for equality using the == operator.
 | 
						|
typedef const void* TypeId;
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class TypeIdHelper {
 | 
						|
 public:
 | 
						|
  // dummy_ must not have a const type.  Otherwise an overly eager
 | 
						|
  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
 | 
						|
  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
 | 
						|
  static bool dummy_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
bool TypeIdHelper<T>::dummy_ = false;
 | 
						|
 | 
						|
// GetTypeId<T>() returns the ID of type T.  Different values will be
 | 
						|
// returned for different types.  Calling the function twice with the
 | 
						|
// same type argument is guaranteed to return the same ID.
 | 
						|
template <typename T>
 | 
						|
TypeId GetTypeId() {
 | 
						|
  // The compiler is required to allocate a different
 | 
						|
  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
 | 
						|
  // the template.  Therefore, the address of dummy_ is guaranteed to
 | 
						|
  // be unique.
 | 
						|
  return &(TypeIdHelper<T>::dummy_);
 | 
						|
}
 | 
						|
 | 
						|
// Returns the type ID of ::testing::Test.  Always call this instead
 | 
						|
// of GetTypeId< ::testing::Test>() to get the type ID of
 | 
						|
// ::testing::Test, as the latter may give the wrong result due to a
 | 
						|
// suspected linker bug when compiling Google Test as a Mac OS X
 | 
						|
// framework.
 | 
						|
GTEST_API_ TypeId GetTestTypeId();
 | 
						|
 | 
						|
// Defines the abstract factory interface that creates instances
 | 
						|
// of a Test object.
 | 
						|
class TestFactoryBase {
 | 
						|
 public:
 | 
						|
  virtual ~TestFactoryBase() {}
 | 
						|
 | 
						|
  // Creates a test instance to run. The instance is both created and destroyed
 | 
						|
  // within TestInfoImpl::Run()
 | 
						|
  virtual Test* CreateTest() = 0;
 | 
						|
 | 
						|
 protected:
 | 
						|
  TestFactoryBase() {}
 | 
						|
 | 
						|
 private:
 | 
						|
  GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
 | 
						|
};
 | 
						|
 | 
						|
// This class provides implementation of TeastFactoryBase interface.
 | 
						|
// It is used in TEST and TEST_F macros.
 | 
						|
template <class TestClass>
 | 
						|
class TestFactoryImpl : public TestFactoryBase {
 | 
						|
 public:
 | 
						|
  Test* CreateTest() override { return new TestClass; }
 | 
						|
};
 | 
						|
 | 
						|
#if GTEST_OS_WINDOWS
 | 
						|
 | 
						|
// Predicate-formatters for implementing the HRESULT checking macros
 | 
						|
// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
 | 
						|
// We pass a long instead of HRESULT to avoid causing an
 | 
						|
// include dependency for the HRESULT type.
 | 
						|
GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
 | 
						|
                                            long hr);  // NOLINT
 | 
						|
GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
 | 
						|
                                            long hr);  // NOLINT
 | 
						|
 | 
						|
#endif  // GTEST_OS_WINDOWS
 | 
						|
 | 
						|
// Types of SetUpTestSuite() and TearDownTestSuite() functions.
 | 
						|
using SetUpTestSuiteFunc = void (*)();
 | 
						|
using TearDownTestSuiteFunc = void (*)();
 | 
						|
 | 
						|
struct CodeLocation {
 | 
						|
  CodeLocation(const std::string& a_file, int a_line)
 | 
						|
      : file(a_file), line(a_line) {}
 | 
						|
 | 
						|
  std::string file;
 | 
						|
  int line;
 | 
						|
};
 | 
						|
 | 
						|
//  Helper to identify which setup function for TestCase / TestSuite to call.
 | 
						|
//  Only one function is allowed, either TestCase or TestSute but not both.
 | 
						|
 | 
						|
// Utility functions to help SuiteApiResolver
 | 
						|
using SetUpTearDownSuiteFuncType = void (*)();
 | 
						|
 | 
						|
inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
 | 
						|
    SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
 | 
						|
  return a == def ? nullptr : a;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
//  Note that SuiteApiResolver inherits from T because
 | 
						|
//  SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way
 | 
						|
//  SuiteApiResolver can access them.
 | 
						|
struct SuiteApiResolver : T {
 | 
						|
  // testing::Test is only forward declared at this point. So we make it a
 | 
						|
  // dependend class for the compiler to be OK with it.
 | 
						|
  using Test =
 | 
						|
      typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
 | 
						|
 | 
						|
  static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
 | 
						|
                                                        int line_num) {
 | 
						|
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
 | 
						|
    SetUpTearDownSuiteFuncType test_case_fp =
 | 
						|
        GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
 | 
						|
    SetUpTearDownSuiteFuncType test_suite_fp =
 | 
						|
        GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
 | 
						|
 | 
						|
    GTEST_CHECK_(!test_case_fp || !test_suite_fp)
 | 
						|
        << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
 | 
						|
           "make sure there is only one present at "
 | 
						|
        << filename << ":" << line_num;
 | 
						|
 | 
						|
    return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
 | 
						|
#else
 | 
						|
    (void)(filename);
 | 
						|
    (void)(line_num);
 | 
						|
    return &T::SetUpTestSuite;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
 | 
						|
                                                           int line_num) {
 | 
						|
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
 | 
						|
    SetUpTearDownSuiteFuncType test_case_fp =
 | 
						|
        GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
 | 
						|
    SetUpTearDownSuiteFuncType test_suite_fp =
 | 
						|
        GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
 | 
						|
 | 
						|
    GTEST_CHECK_(!test_case_fp || !test_suite_fp)
 | 
						|
        << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
 | 
						|
           " please make sure there is only one present at"
 | 
						|
        << filename << ":" << line_num;
 | 
						|
 | 
						|
    return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
 | 
						|
#else
 | 
						|
    (void)(filename);
 | 
						|
    (void)(line_num);
 | 
						|
    return &T::TearDownTestSuite;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Creates a new TestInfo object and registers it with Google Test;
 | 
						|
// returns the created object.
 | 
						|
//
 | 
						|
// Arguments:
 | 
						|
//
 | 
						|
//   test_suite_name:   name of the test suite
 | 
						|
//   name:             name of the test
 | 
						|
//   type_param        the name of the test's type parameter, or NULL if
 | 
						|
//                     this is not a typed or a type-parameterized test.
 | 
						|
//   value_param       text representation of the test's value parameter,
 | 
						|
//                     or NULL if this is not a type-parameterized test.
 | 
						|
//   code_location:    code location where the test is defined
 | 
						|
//   fixture_class_id: ID of the test fixture class
 | 
						|
//   set_up_tc:        pointer to the function that sets up the test suite
 | 
						|
//   tear_down_tc:     pointer to the function that tears down the test suite
 | 
						|
//   factory:          pointer to the factory that creates a test object.
 | 
						|
//                     The newly created TestInfo instance will assume
 | 
						|
//                     ownership of the factory object.
 | 
						|
GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
 | 
						|
    const char* test_suite_name, const char* name, const char* type_param,
 | 
						|
    const char* value_param, CodeLocation code_location,
 | 
						|
    TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
 | 
						|
    TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
 | 
						|
 | 
						|
// If *pstr starts with the given prefix, modifies *pstr to be right
 | 
						|
// past the prefix and returns true; otherwise leaves *pstr unchanged
 | 
						|
// and returns false.  None of pstr, *pstr, and prefix can be NULL.
 | 
						|
GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
 | 
						|
 | 
						|
#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
 | 
						|
 | 
						|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
 | 
						|
/* class A needs to have dll-interface to be used by clients of class B */)
 | 
						|
 | 
						|
// State of the definition of a type-parameterized test suite.
 | 
						|
class GTEST_API_ TypedTestSuitePState {
 | 
						|
 public:
 | 
						|
  TypedTestSuitePState() : registered_(false) {}
 | 
						|
 | 
						|
  // Adds the given test name to defined_test_names_ and return true
 | 
						|
  // if the test suite hasn't been registered; otherwise aborts the
 | 
						|
  // program.
 | 
						|
  bool AddTestName(const char* file, int line, const char* case_name,
 | 
						|
                   const char* test_name) {
 | 
						|
    if (registered_) {
 | 
						|
      fprintf(stderr,
 | 
						|
              "%s Test %s must be defined before "
 | 
						|
              "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
 | 
						|
              FormatFileLocation(file, line).c_str(), test_name, case_name);
 | 
						|
      fflush(stderr);
 | 
						|
      posix::Abort();
 | 
						|
    }
 | 
						|
    registered_tests_.insert(
 | 
						|
        ::std::make_pair(test_name, CodeLocation(file, line)));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool TestExists(const std::string& test_name) const {
 | 
						|
    return registered_tests_.count(test_name) > 0;
 | 
						|
  }
 | 
						|
 | 
						|
  const CodeLocation& GetCodeLocation(const std::string& test_name) const {
 | 
						|
    RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
 | 
						|
    GTEST_CHECK_(it != registered_tests_.end());
 | 
						|
    return it->second;
 | 
						|
  }
 | 
						|
 | 
						|
  // Verifies that registered_tests match the test names in
 | 
						|
  // defined_test_names_; returns registered_tests if successful, or
 | 
						|
  // aborts the program otherwise.
 | 
						|
  const char* VerifyRegisteredTestNames(const char* test_suite_name,
 | 
						|
                                        const char* file, int line,
 | 
						|
                                        const char* registered_tests);
 | 
						|
 | 
						|
 private:
 | 
						|
  typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
 | 
						|
 | 
						|
  bool registered_;
 | 
						|
  RegisteredTestsMap registered_tests_;
 | 
						|
};
 | 
						|
 | 
						|
//  Legacy API is deprecated but still available
 | 
						|
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
 | 
						|
using TypedTestCasePState = TypedTestSuitePState;
 | 
						|
#endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
 | 
						|
 | 
						|
GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
 | 
						|
 | 
						|
// Skips to the first non-space char after the first comma in 'str';
 | 
						|
// returns NULL if no comma is found in 'str'.
 | 
						|
inline const char* SkipComma(const char* str) {
 | 
						|
  const char* comma = strchr(str, ',');
 | 
						|
  if (comma == nullptr) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  while (IsSpace(*(++comma))) {}
 | 
						|
  return comma;
 | 
						|
}
 | 
						|
 | 
						|
// Returns the prefix of 'str' before the first comma in it; returns
 | 
						|
// the entire string if it contains no comma.
 | 
						|
inline std::string GetPrefixUntilComma(const char* str) {
 | 
						|
  const char* comma = strchr(str, ',');
 | 
						|
  return comma == nullptr ? str : std::string(str, comma);
 | 
						|
}
 | 
						|
 | 
						|
// Splits a given string on a given delimiter, populating a given
 | 
						|
// vector with the fields.
 | 
						|
void SplitString(const ::std::string& str, char delimiter,
 | 
						|
                 ::std::vector< ::std::string>* dest);
 | 
						|
 | 
						|
// The default argument to the template below for the case when the user does
 | 
						|
// not provide a name generator.
 | 
						|
struct DefaultNameGenerator {
 | 
						|
  template <typename T>
 | 
						|
  static std::string GetName(int i) {
 | 
						|
    return StreamableToString(i);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename Provided = DefaultNameGenerator>
 | 
						|
struct NameGeneratorSelector {
 | 
						|
  typedef Provided type;
 | 
						|
};
 | 
						|
 | 
						|
template <typename NameGenerator>
 | 
						|
void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
 | 
						|
 | 
						|
template <typename NameGenerator, typename Types>
 | 
						|
void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
 | 
						|
  result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
 | 
						|
  GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
 | 
						|
                                          i + 1);
 | 
						|
}
 | 
						|
 | 
						|
template <typename NameGenerator, typename Types>
 | 
						|
std::vector<std::string> GenerateNames() {
 | 
						|
  std::vector<std::string> result;
 | 
						|
  GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
 | 
						|
// registers a list of type-parameterized tests with Google Test.  The
 | 
						|
// return value is insignificant - we just need to return something
 | 
						|
// such that we can call this function in a namespace scope.
 | 
						|
//
 | 
						|
// Implementation note: The GTEST_TEMPLATE_ macro declares a template
 | 
						|
// template parameter.  It's defined in gtest-type-util.h.
 | 
						|
template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
 | 
						|
class TypeParameterizedTest {
 | 
						|
 public:
 | 
						|
  // 'index' is the index of the test in the type list 'Types'
 | 
						|
  // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
 | 
						|
  // Types).  Valid values for 'index' are [0, N - 1] where N is the
 | 
						|
  // length of Types.
 | 
						|
  static bool Register(const char* prefix, const CodeLocation& code_location,
 | 
						|
                       const char* case_name, const char* test_names, int index,
 | 
						|
                       const std::vector<std::string>& type_names =
 | 
						|
                           GenerateNames<DefaultNameGenerator, Types>()) {
 | 
						|
    typedef typename Types::Head Type;
 | 
						|
    typedef Fixture<Type> FixtureClass;
 | 
						|
    typedef typename GTEST_BIND_(TestSel, Type) TestClass;
 | 
						|
 | 
						|
    // First, registers the first type-parameterized test in the type
 | 
						|
    // list.
 | 
						|
    MakeAndRegisterTestInfo(
 | 
						|
        (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
 | 
						|
         "/" + type_names[static_cast<size_t>(index)])
 | 
						|
            .c_str(),
 | 
						|
        StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
 | 
						|
        GetTypeName<Type>().c_str(),
 | 
						|
        nullptr,  // No value parameter.
 | 
						|
        code_location, GetTypeId<FixtureClass>(),
 | 
						|
        SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
 | 
						|
            code_location.file.c_str(), code_location.line),
 | 
						|
        SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
 | 
						|
            code_location.file.c_str(), code_location.line),
 | 
						|
        new TestFactoryImpl<TestClass>);
 | 
						|
 | 
						|
    // Next, recurses (at compile time) with the tail of the type list.
 | 
						|
    return TypeParameterizedTest<Fixture, TestSel,
 | 
						|
                                 typename Types::Tail>::Register(prefix,
 | 
						|
                                                                 code_location,
 | 
						|
                                                                 case_name,
 | 
						|
                                                                 test_names,
 | 
						|
                                                                 index + 1,
 | 
						|
                                                                 type_names);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// The base case for the compile time recursion.
 | 
						|
template <GTEST_TEMPLATE_ Fixture, class TestSel>
 | 
						|
class TypeParameterizedTest<Fixture, TestSel, internal::None> {
 | 
						|
 public:
 | 
						|
  static bool Register(const char* /*prefix*/, const CodeLocation&,
 | 
						|
                       const char* /*case_name*/, const char* /*test_names*/,
 | 
						|
                       int /*index*/,
 | 
						|
                       const std::vector<std::string>& =
 | 
						|
                           std::vector<std::string>() /*type_names*/) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
 | 
						|
                                                   CodeLocation code_location);
 | 
						|
GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
 | 
						|
    const char* case_name);
 | 
						|
 | 
						|
// TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
 | 
						|
// registers *all combinations* of 'Tests' and 'Types' with Google
 | 
						|
// Test.  The return value is insignificant - we just need to return
 | 
						|
// something such that we can call this function in a namespace scope.
 | 
						|
template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
 | 
						|
class TypeParameterizedTestSuite {
 | 
						|
 public:
 | 
						|
  static bool Register(const char* prefix, CodeLocation code_location,
 | 
						|
                       const TypedTestSuitePState* state, const char* case_name,
 | 
						|
                       const char* test_names,
 | 
						|
                       const std::vector<std::string>& type_names =
 | 
						|
                           GenerateNames<DefaultNameGenerator, Types>()) {
 | 
						|
    RegisterTypeParameterizedTestSuiteInstantiation(case_name);
 | 
						|
    std::string test_name = StripTrailingSpaces(
 | 
						|
        GetPrefixUntilComma(test_names));
 | 
						|
    if (!state->TestExists(test_name)) {
 | 
						|
      fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
 | 
						|
              case_name, test_name.c_str(),
 | 
						|
              FormatFileLocation(code_location.file.c_str(),
 | 
						|
                                 code_location.line).c_str());
 | 
						|
      fflush(stderr);
 | 
						|
      posix::Abort();
 | 
						|
    }
 | 
						|
    const CodeLocation& test_location = state->GetCodeLocation(test_name);
 | 
						|
 | 
						|
    typedef typename Tests::Head Head;
 | 
						|
 | 
						|
    // First, register the first test in 'Test' for each type in 'Types'.
 | 
						|
    TypeParameterizedTest<Fixture, Head, Types>::Register(
 | 
						|
        prefix, test_location, case_name, test_names, 0, type_names);
 | 
						|
 | 
						|
    // Next, recurses (at compile time) with the tail of the test list.
 | 
						|
    return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
 | 
						|
                                      Types>::Register(prefix, code_location,
 | 
						|
                                                       state, case_name,
 | 
						|
                                                       SkipComma(test_names),
 | 
						|
                                                       type_names);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// The base case for the compile time recursion.
 | 
						|
template <GTEST_TEMPLATE_ Fixture, typename Types>
 | 
						|
class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
 | 
						|
 public:
 | 
						|
  static bool Register(const char* /*prefix*/, const CodeLocation&,
 | 
						|
                       const TypedTestSuitePState* /*state*/,
 | 
						|
                       const char* /*case_name*/, const char* /*test_names*/,
 | 
						|
                       const std::vector<std::string>& =
 | 
						|
                           std::vector<std::string>() /*type_names*/) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
#endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
 | 
						|
 | 
						|
// Returns the current OS stack trace as an std::string.
 | 
						|
//
 | 
						|
// The maximum number of stack frames to be included is specified by
 | 
						|
// the gtest_stack_trace_depth flag.  The skip_count parameter
 | 
						|
// specifies the number of top frames to be skipped, which doesn't
 | 
						|
// count against the number of frames to be included.
 | 
						|
//
 | 
						|
// For example, if Foo() calls Bar(), which in turn calls
 | 
						|
// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
 | 
						|
// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
 | 
						|
GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
 | 
						|
    UnitTest* unit_test, int skip_count);
 | 
						|
 | 
						|
// Helpers for suppressing warnings on unreachable code or constant
 | 
						|
// condition.
 | 
						|
 | 
						|
// Always returns true.
 | 
						|
GTEST_API_ bool AlwaysTrue();
 | 
						|
 | 
						|
// Always returns false.
 | 
						|
inline bool AlwaysFalse() { return !AlwaysTrue(); }
 | 
						|
 | 
						|
// Helper for suppressing false warning from Clang on a const char*
 | 
						|
// variable declared in a conditional expression always being NULL in
 | 
						|
// the else branch.
 | 
						|
struct GTEST_API_ ConstCharPtr {
 | 
						|
  ConstCharPtr(const char* str) : value(str) {}
 | 
						|
  operator bool() const { return true; }
 | 
						|
  const char* value;
 | 
						|
};
 | 
						|
 | 
						|
// Helper for declaring std::string within 'if' statement
 | 
						|
// in pre C++17 build environment.
 | 
						|
struct TrueWithString {
 | 
						|
  TrueWithString() = default;
 | 
						|
  explicit TrueWithString(const char* str) : value(str) {}
 | 
						|
  explicit TrueWithString(const std::string& str) : value(str) {}
 | 
						|
  explicit operator bool() const { return true; }
 | 
						|
  std::string value;
 | 
						|
};
 | 
						|
 | 
						|
// A simple Linear Congruential Generator for generating random
 | 
						|
// numbers with a uniform distribution.  Unlike rand() and srand(), it
 | 
						|
// doesn't use global state (and therefore can't interfere with user
 | 
						|
// code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
 | 
						|
// but it's good enough for our purposes.
 | 
						|
class GTEST_API_ Random {
 | 
						|
 public:
 | 
						|
  static const uint32_t kMaxRange = 1u << 31;
 | 
						|
 | 
						|
  explicit Random(uint32_t seed) : state_(seed) {}
 | 
						|
 | 
						|
  void Reseed(uint32_t seed) { state_ = seed; }
 | 
						|
 | 
						|
  // Generates a random number from [0, range).  Crashes if 'range' is
 | 
						|
  // 0 or greater than kMaxRange.
 | 
						|
  uint32_t Generate(uint32_t range);
 | 
						|
 | 
						|
 private:
 | 
						|
  uint32_t state_;
 | 
						|
  GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
 | 
						|
};
 | 
						|
 | 
						|
// Turns const U&, U&, const U, and U all into U.
 | 
						|
#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
 | 
						|
  typename std::remove_const<typename std::remove_reference<T>::type>::type
 | 
						|
 | 
						|
// HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
 | 
						|
// that's true if and only if T has methods DebugString() and ShortDebugString()
 | 
						|
// that return std::string.
 | 
						|
template <typename T>
 | 
						|
class HasDebugStringAndShortDebugString {
 | 
						|
 private:
 | 
						|
  template <typename C>
 | 
						|
  static constexpr auto CheckDebugString(C*) -> typename std::is_same<
 | 
						|
      std::string, decltype(std::declval<const C>().DebugString())>::type;
 | 
						|
  template <typename>
 | 
						|
  static constexpr std::false_type CheckDebugString(...);
 | 
						|
 | 
						|
  template <typename C>
 | 
						|
  static constexpr auto CheckShortDebugString(C*) -> typename std::is_same<
 | 
						|
      std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
 | 
						|
  template <typename>
 | 
						|
  static constexpr std::false_type CheckShortDebugString(...);
 | 
						|
 | 
						|
  using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
 | 
						|
  using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
 | 
						|
 | 
						|
 public:
 | 
						|
  static constexpr bool value =
 | 
						|
      HasDebugStringType::value && HasShortDebugStringType::value;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
constexpr bool HasDebugStringAndShortDebugString<T>::value;
 | 
						|
 | 
						|
// When the compiler sees expression IsContainerTest<C>(0), if C is an
 | 
						|
// STL-style container class, the first overload of IsContainerTest
 | 
						|
// will be viable (since both C::iterator* and C::const_iterator* are
 | 
						|
// valid types and NULL can be implicitly converted to them).  It will
 | 
						|
// be picked over the second overload as 'int' is a perfect match for
 | 
						|
// the type of argument 0.  If C::iterator or C::const_iterator is not
 | 
						|
// a valid type, the first overload is not viable, and the second
 | 
						|
// overload will be picked.  Therefore, we can determine whether C is
 | 
						|
// a container class by checking the type of IsContainerTest<C>(0).
 | 
						|
// The value of the expression is insignificant.
 | 
						|
//
 | 
						|
// In C++11 mode we check the existence of a const_iterator and that an
 | 
						|
// iterator is properly implemented for the container.
 | 
						|
//
 | 
						|
// For pre-C++11 that we look for both C::iterator and C::const_iterator.
 | 
						|
// The reason is that C++ injects the name of a class as a member of the
 | 
						|
// class itself (e.g. you can refer to class iterator as either
 | 
						|
// 'iterator' or 'iterator::iterator').  If we look for C::iterator
 | 
						|
// only, for example, we would mistakenly think that a class named
 | 
						|
// iterator is an STL container.
 | 
						|
//
 | 
						|
// Also note that the simpler approach of overloading
 | 
						|
// IsContainerTest(typename C::const_iterator*) and
 | 
						|
// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
 | 
						|
typedef int IsContainer;
 | 
						|
template <class C,
 | 
						|
          class Iterator = decltype(::std::declval<const C&>().begin()),
 | 
						|
          class = decltype(::std::declval<const C&>().end()),
 | 
						|
          class = decltype(++::std::declval<Iterator&>()),
 | 
						|
          class = decltype(*::std::declval<Iterator>()),
 | 
						|
          class = typename C::const_iterator>
 | 
						|
IsContainer IsContainerTest(int /* dummy */) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
typedef char IsNotContainer;
 | 
						|
template <class C>
 | 
						|
IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
 | 
						|
 | 
						|
// Trait to detect whether a type T is a hash table.
 | 
						|
// The heuristic used is that the type contains an inner type `hasher` and does
 | 
						|
// not contain an inner type `reverse_iterator`.
 | 
						|
// If the container is iterable in reverse, then order might actually matter.
 | 
						|
template <typename T>
 | 
						|
struct IsHashTable {
 | 
						|
 private:
 | 
						|
  template <typename U>
 | 
						|
  static char test(typename U::hasher*, typename U::reverse_iterator*);
 | 
						|
  template <typename U>
 | 
						|
  static int test(typename U::hasher*, ...);
 | 
						|
  template <typename U>
 | 
						|
  static char test(...);
 | 
						|
 | 
						|
 public:
 | 
						|
  static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
const bool IsHashTable<T>::value;
 | 
						|
 | 
						|
template <typename C,
 | 
						|
          bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
 | 
						|
struct IsRecursiveContainerImpl;
 | 
						|
 | 
						|
template <typename C>
 | 
						|
struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
 | 
						|
 | 
						|
// Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
 | 
						|
// obey the same inconsistencies as the IsContainerTest, namely check if
 | 
						|
// something is a container is relying on only const_iterator in C++11 and
 | 
						|
// is relying on both const_iterator and iterator otherwise
 | 
						|
template <typename C>
 | 
						|
struct IsRecursiveContainerImpl<C, true> {
 | 
						|
  using value_type = decltype(*std::declval<typename C::const_iterator>());
 | 
						|
  using type =
 | 
						|
      std::is_same<typename std::remove_const<
 | 
						|
                       typename std::remove_reference<value_type>::type>::type,
 | 
						|
                   C>;
 | 
						|
};
 | 
						|
 | 
						|
// IsRecursiveContainer<Type> is a unary compile-time predicate that
 | 
						|
// evaluates whether C is a recursive container type. A recursive container
 | 
						|
// type is a container type whose value_type is equal to the container type
 | 
						|
// itself. An example for a recursive container type is
 | 
						|
// boost::filesystem::path, whose iterator has a value_type that is equal to
 | 
						|
// boost::filesystem::path.
 | 
						|
template <typename C>
 | 
						|
struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
 | 
						|
 | 
						|
// Utilities for native arrays.
 | 
						|
 | 
						|
// ArrayEq() compares two k-dimensional native arrays using the
 | 
						|
// elements' operator==, where k can be any integer >= 0.  When k is
 | 
						|
// 0, ArrayEq() degenerates into comparing a single pair of values.
 | 
						|
 | 
						|
template <typename T, typename U>
 | 
						|
bool ArrayEq(const T* lhs, size_t size, const U* rhs);
 | 
						|
 | 
						|
// This generic version is used when k is 0.
 | 
						|
template <typename T, typename U>
 | 
						|
inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
 | 
						|
 | 
						|
// This overload is used when k >= 1.
 | 
						|
template <typename T, typename U, size_t N>
 | 
						|
inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
 | 
						|
  return internal::ArrayEq(lhs, N, rhs);
 | 
						|
}
 | 
						|
 | 
						|
// This helper reduces code bloat.  If we instead put its logic inside
 | 
						|
// the previous ArrayEq() function, arrays with different sizes would
 | 
						|
// lead to different copies of the template code.
 | 
						|
template <typename T, typename U>
 | 
						|
bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
 | 
						|
  for (size_t i = 0; i != size; i++) {
 | 
						|
    if (!internal::ArrayEq(lhs[i], rhs[i]))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Finds the first element in the iterator range [begin, end) that
 | 
						|
// equals elem.  Element may be a native array type itself.
 | 
						|
template <typename Iter, typename Element>
 | 
						|
Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
 | 
						|
  for (Iter it = begin; it != end; ++it) {
 | 
						|
    if (internal::ArrayEq(*it, elem))
 | 
						|
      return it;
 | 
						|
  }
 | 
						|
  return end;
 | 
						|
}
 | 
						|
 | 
						|
// CopyArray() copies a k-dimensional native array using the elements'
 | 
						|
// operator=, where k can be any integer >= 0.  When k is 0,
 | 
						|
// CopyArray() degenerates into copying a single value.
 | 
						|
 | 
						|
template <typename T, typename U>
 | 
						|
void CopyArray(const T* from, size_t size, U* to);
 | 
						|
 | 
						|
// This generic version is used when k is 0.
 | 
						|
template <typename T, typename U>
 | 
						|
inline void CopyArray(const T& from, U* to) { *to = from; }
 | 
						|
 | 
						|
// This overload is used when k >= 1.
 | 
						|
template <typename T, typename U, size_t N>
 | 
						|
inline void CopyArray(const T(&from)[N], U(*to)[N]) {
 | 
						|
  internal::CopyArray(from, N, *to);
 | 
						|
}
 | 
						|
 | 
						|
// This helper reduces code bloat.  If we instead put its logic inside
 | 
						|
// the previous CopyArray() function, arrays with different sizes
 | 
						|
// would lead to different copies of the template code.
 | 
						|
template <typename T, typename U>
 | 
						|
void CopyArray(const T* from, size_t size, U* to) {
 | 
						|
  for (size_t i = 0; i != size; i++) {
 | 
						|
    internal::CopyArray(from[i], to + i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// The relation between an NativeArray object (see below) and the
 | 
						|
// native array it represents.
 | 
						|
// We use 2 different structs to allow non-copyable types to be used, as long
 | 
						|
// as RelationToSourceReference() is passed.
 | 
						|
struct RelationToSourceReference {};
 | 
						|
struct RelationToSourceCopy {};
 | 
						|
 | 
						|
// Adapts a native array to a read-only STL-style container.  Instead
 | 
						|
// of the complete STL container concept, this adaptor only implements
 | 
						|
// members useful for Google Mock's container matchers.  New members
 | 
						|
// should be added as needed.  To simplify the implementation, we only
 | 
						|
// support Element being a raw type (i.e. having no top-level const or
 | 
						|
// reference modifier).  It's the client's responsibility to satisfy
 | 
						|
// this requirement.  Element can be an array type itself (hence
 | 
						|
// multi-dimensional arrays are supported).
 | 
						|
template <typename Element>
 | 
						|
class NativeArray {
 | 
						|
 public:
 | 
						|
  // STL-style container typedefs.
 | 
						|
  typedef Element value_type;
 | 
						|
  typedef Element* iterator;
 | 
						|
  typedef const Element* const_iterator;
 | 
						|
 | 
						|
  // Constructs from a native array. References the source.
 | 
						|
  NativeArray(const Element* array, size_t count, RelationToSourceReference) {
 | 
						|
    InitRef(array, count);
 | 
						|
  }
 | 
						|
 | 
						|
  // Constructs from a native array. Copies the source.
 | 
						|
  NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
 | 
						|
    InitCopy(array, count);
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy constructor.
 | 
						|
  NativeArray(const NativeArray& rhs) {
 | 
						|
    (this->*rhs.clone_)(rhs.array_, rhs.size_);
 | 
						|
  }
 | 
						|
 | 
						|
  ~NativeArray() {
 | 
						|
    if (clone_ != &NativeArray::InitRef)
 | 
						|
      delete[] array_;
 | 
						|
  }
 | 
						|
 | 
						|
  // STL-style container methods.
 | 
						|
  size_t size() const { return size_; }
 | 
						|
  const_iterator begin() const { return array_; }
 | 
						|
  const_iterator end() const { return array_ + size_; }
 | 
						|
  bool operator==(const NativeArray& rhs) const {
 | 
						|
    return size() == rhs.size() &&
 | 
						|
        ArrayEq(begin(), size(), rhs.begin());
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  static_assert(!std::is_const<Element>::value, "Type must not be const");
 | 
						|
  static_assert(!std::is_reference<Element>::value,
 | 
						|
                "Type must not be a reference");
 | 
						|
 | 
						|
  // Initializes this object with a copy of the input.
 | 
						|
  void InitCopy(const Element* array, size_t a_size) {
 | 
						|
    Element* const copy = new Element[a_size];
 | 
						|
    CopyArray(array, a_size, copy);
 | 
						|
    array_ = copy;
 | 
						|
    size_ = a_size;
 | 
						|
    clone_ = &NativeArray::InitCopy;
 | 
						|
  }
 | 
						|
 | 
						|
  // Initializes this object with a reference of the input.
 | 
						|
  void InitRef(const Element* array, size_t a_size) {
 | 
						|
    array_ = array;
 | 
						|
    size_ = a_size;
 | 
						|
    clone_ = &NativeArray::InitRef;
 | 
						|
  }
 | 
						|
 | 
						|
  const Element* array_;
 | 
						|
  size_t size_;
 | 
						|
  void (NativeArray::*clone_)(const Element*, size_t);
 | 
						|
};
 | 
						|
 | 
						|
// Backport of std::index_sequence.
 | 
						|
template <size_t... Is>
 | 
						|
struct IndexSequence {
 | 
						|
  using type = IndexSequence;
 | 
						|
};
 | 
						|
 | 
						|
// Double the IndexSequence, and one if plus_one is true.
 | 
						|
template <bool plus_one, typename T, size_t sizeofT>
 | 
						|
struct DoubleSequence;
 | 
						|
template <size_t... I, size_t sizeofT>
 | 
						|
struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
 | 
						|
  using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
 | 
						|
};
 | 
						|
template <size_t... I, size_t sizeofT>
 | 
						|
struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
 | 
						|
  using type = IndexSequence<I..., (sizeofT + I)...>;
 | 
						|
};
 | 
						|
 | 
						|
// Backport of std::make_index_sequence.
 | 
						|
// It uses O(ln(N)) instantiation depth.
 | 
						|
template <size_t N>
 | 
						|
struct MakeIndexSequenceImpl
 | 
						|
    : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
 | 
						|
                     N / 2>::type {};
 | 
						|
 | 
						|
template <>
 | 
						|
struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
 | 
						|
 | 
						|
template <size_t N>
 | 
						|
using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
 | 
						|
 | 
						|
template <typename... T>
 | 
						|
using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
 | 
						|
 | 
						|
template <size_t>
 | 
						|
struct Ignore {
 | 
						|
  Ignore(...);  // NOLINT
 | 
						|
};
 | 
						|
 | 
						|
template <typename>
 | 
						|
struct ElemFromListImpl;
 | 
						|
template <size_t... I>
 | 
						|
struct ElemFromListImpl<IndexSequence<I...>> {
 | 
						|
  // We make Ignore a template to solve a problem with MSVC.
 | 
						|
  // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
 | 
						|
  // MSVC doesn't understand how to deal with that pack expansion.
 | 
						|
  // Use `0 * I` to have a single instantiation of Ignore.
 | 
						|
  template <typename R>
 | 
						|
  static R Apply(Ignore<0 * I>..., R (*)(), ...);
 | 
						|
};
 | 
						|
 | 
						|
template <size_t N, typename... T>
 | 
						|
struct ElemFromList {
 | 
						|
  using type =
 | 
						|
      decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
 | 
						|
          static_cast<T (*)()>(nullptr)...));
 | 
						|
};
 | 
						|
 | 
						|
struct FlatTupleConstructTag {};
 | 
						|
 | 
						|
template <typename... T>
 | 
						|
class FlatTuple;
 | 
						|
 | 
						|
template <typename Derived, size_t I>
 | 
						|
struct FlatTupleElemBase;
 | 
						|
 | 
						|
template <typename... T, size_t I>
 | 
						|
struct FlatTupleElemBase<FlatTuple<T...>, I> {
 | 
						|
  using value_type = typename ElemFromList<I, T...>::type;
 | 
						|
  FlatTupleElemBase() = default;
 | 
						|
  template <typename Arg>
 | 
						|
  explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
 | 
						|
      : value(std::forward<Arg>(t)) {}
 | 
						|
  value_type value;
 | 
						|
};
 | 
						|
 | 
						|
template <typename Derived, typename Idx>
 | 
						|
struct FlatTupleBase;
 | 
						|
 | 
						|
template <size_t... Idx, typename... T>
 | 
						|
struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
 | 
						|
    : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
 | 
						|
  using Indices = IndexSequence<Idx...>;
 | 
						|
  FlatTupleBase() = default;
 | 
						|
  template <typename... Args>
 | 
						|
  explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
 | 
						|
      : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
 | 
						|
                                                std::forward<Args>(args))... {}
 | 
						|
 | 
						|
  template <size_t I>
 | 
						|
  const typename ElemFromList<I, T...>::type& Get() const {
 | 
						|
    return FlatTupleElemBase<FlatTuple<T...>, I>::value;
 | 
						|
  }
 | 
						|
 | 
						|
  template <size_t I>
 | 
						|
  typename ElemFromList<I, T...>::type& Get() {
 | 
						|
    return FlatTupleElemBase<FlatTuple<T...>, I>::value;
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename F>
 | 
						|
  auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
 | 
						|
    return std::forward<F>(f)(Get<Idx>()...);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename F>
 | 
						|
  auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
 | 
						|
    return std::forward<F>(f)(Get<Idx>()...);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Analog to std::tuple but with different tradeoffs.
 | 
						|
// This class minimizes the template instantiation depth, thus allowing more
 | 
						|
// elements than std::tuple would. std::tuple has been seen to require an
 | 
						|
// instantiation depth of more than 10x the number of elements in some
 | 
						|
// implementations.
 | 
						|
// FlatTuple and ElemFromList are not recursive and have a fixed depth
 | 
						|
// regardless of T...
 | 
						|
// MakeIndexSequence, on the other hand, it is recursive but with an
 | 
						|
// instantiation depth of O(ln(N)).
 | 
						|
template <typename... T>
 | 
						|
class FlatTuple
 | 
						|
    : private FlatTupleBase<FlatTuple<T...>,
 | 
						|
                            typename MakeIndexSequence<sizeof...(T)>::type> {
 | 
						|
  using Indices = typename FlatTupleBase<
 | 
						|
      FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
 | 
						|
 | 
						|
 public:
 | 
						|
  FlatTuple() = default;
 | 
						|
  template <typename... Args,
 | 
						|
            typename = typename std::enable_if<
 | 
						|
                !std::is_same<void(FlatTuple), void(typename std::decay<
 | 
						|
                                                    Args>::type...)>::value &&
 | 
						|
                (sizeof...(T) >= 1)>::type>
 | 
						|
  explicit FlatTuple(Args&&... args)
 | 
						|
      : FlatTuple::FlatTupleBase(FlatTupleConstructTag{},
 | 
						|
                                 std::forward<Args>(args)...) {}
 | 
						|
 | 
						|
  using FlatTuple::FlatTupleBase::Apply;
 | 
						|
  using FlatTuple::FlatTupleBase::Get;
 | 
						|
};
 | 
						|
 | 
						|
// Utility functions to be called with static_assert to induce deprecation
 | 
						|
// warnings.
 | 
						|
GTEST_INTERNAL_DEPRECATED(
 | 
						|
    "INSTANTIATE_TEST_CASE_P is deprecated, please use "
 | 
						|
    "INSTANTIATE_TEST_SUITE_P")
 | 
						|
constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
 | 
						|
 | 
						|
GTEST_INTERNAL_DEPRECATED(
 | 
						|
    "TYPED_TEST_CASE_P is deprecated, please use "
 | 
						|
    "TYPED_TEST_SUITE_P")
 | 
						|
constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
 | 
						|
 | 
						|
GTEST_INTERNAL_DEPRECATED(
 | 
						|
    "TYPED_TEST_CASE is deprecated, please use "
 | 
						|
    "TYPED_TEST_SUITE")
 | 
						|
constexpr bool TypedTestCaseIsDeprecated() { return true; }
 | 
						|
 | 
						|
GTEST_INTERNAL_DEPRECATED(
 | 
						|
    "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
 | 
						|
    "REGISTER_TYPED_TEST_SUITE_P")
 | 
						|
constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
 | 
						|
 | 
						|
GTEST_INTERNAL_DEPRECATED(
 | 
						|
    "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
 | 
						|
    "INSTANTIATE_TYPED_TEST_SUITE_P")
 | 
						|
constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
}  // namespace testing
 | 
						|
 | 
						|
namespace std {
 | 
						|
// Some standard library implementations use `struct tuple_size` and some use
 | 
						|
// `class tuple_size`. Clang warns about the mismatch.
 | 
						|
// https://reviews.llvm.org/D55466
 | 
						|
#ifdef __clang__
 | 
						|
#pragma clang diagnostic push
 | 
						|
#pragma clang diagnostic ignored "-Wmismatched-tags"
 | 
						|
#endif
 | 
						|
template <typename... Ts>
 | 
						|
struct tuple_size<testing::internal::FlatTuple<Ts...>>
 | 
						|
    : std::integral_constant<size_t, sizeof...(Ts)> {};
 | 
						|
#ifdef __clang__
 | 
						|
#pragma clang diagnostic pop
 | 
						|
#endif
 | 
						|
}  // namespace std
 | 
						|
 | 
						|
#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
 | 
						|
  ::testing::internal::AssertHelper(result_type, file, line, message) \
 | 
						|
    = ::testing::Message()
 | 
						|
 | 
						|
#define GTEST_MESSAGE_(message, result_type) \
 | 
						|
  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
 | 
						|
 | 
						|
#define GTEST_FATAL_FAILURE_(message) \
 | 
						|
  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
 | 
						|
 | 
						|
#define GTEST_NONFATAL_FAILURE_(message) \
 | 
						|
  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
 | 
						|
 | 
						|
#define GTEST_SUCCESS_(message) \
 | 
						|
  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
 | 
						|
 | 
						|
#define GTEST_SKIP_(message) \
 | 
						|
  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
 | 
						|
 | 
						|
// Suppress MSVC warning 4072 (unreachable code) for the code following
 | 
						|
// statement if it returns or throws (or doesn't return or throw in some
 | 
						|
// situations).
 | 
						|
// NOTE: The "else" is important to keep this expansion to prevent a top-level
 | 
						|
// "else" from attaching to our "if".
 | 
						|
#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
 | 
						|
  if (::testing::internal::AlwaysTrue()) {                        \
 | 
						|
    statement;                                                    \
 | 
						|
  } else                     /* NOLINT */                         \
 | 
						|
    static_assert(true, "")  // User must have a semicolon after expansion.
 | 
						|
 | 
						|
#if GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
namespace testing {
 | 
						|
namespace internal {
 | 
						|
 | 
						|
class NeverThrown {
 | 
						|
 public:
 | 
						|
  const char* what() const noexcept {
 | 
						|
    return "this exception should never be thrown";
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
}  // namespace testing
 | 
						|
 | 
						|
#if GTEST_HAS_RTTI
 | 
						|
 | 
						|
#define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
 | 
						|
 | 
						|
#else  // GTEST_HAS_RTTI
 | 
						|
 | 
						|
#define GTEST_EXCEPTION_TYPE_(e) \
 | 
						|
  std::string { "an std::exception-derived error" }
 | 
						|
 | 
						|
#endif  // GTEST_HAS_RTTI
 | 
						|
 | 
						|
#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)   \
 | 
						|
  catch (typename std::conditional<                                            \
 | 
						|
         std::is_same<typename std::remove_cv<typename std::remove_reference<  \
 | 
						|
                          expected_exception>::type>::type,                    \
 | 
						|
                      std::exception>::value,                                  \
 | 
						|
         const ::testing::internal::NeverThrown&, const std::exception&>::type \
 | 
						|
             e) {                                                              \
 | 
						|
    gtest_msg.value = "Expected: " #statement                                  \
 | 
						|
                      " throws an exception of type " #expected_exception      \
 | 
						|
                      ".\n  Actual: it throws ";                               \
 | 
						|
    gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                               \
 | 
						|
    gtest_msg.value += " with description \"";                                 \
 | 
						|
    gtest_msg.value += e.what();                                               \
 | 
						|
    gtest_msg.value += "\".";                                                  \
 | 
						|
    goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);                \
 | 
						|
  }
 | 
						|
 | 
						|
#else  // GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
 | 
						|
 | 
						|
#endif  // GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
#define GTEST_TEST_THROW_(statement, expected_exception, fail)              \
 | 
						|
  GTEST_AMBIGUOUS_ELSE_BLOCKER_                                             \
 | 
						|
  if (::testing::internal::TrueWithString gtest_msg{}) {                    \
 | 
						|
    bool gtest_caught_expected = false;                                     \
 | 
						|
    try {                                                                   \
 | 
						|
      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);            \
 | 
						|
    } catch (expected_exception const&) {                                   \
 | 
						|
      gtest_caught_expected = true;                                         \
 | 
						|
    }                                                                       \
 | 
						|
    GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)    \
 | 
						|
    catch (...) {                                                           \
 | 
						|
      gtest_msg.value = "Expected: " #statement                             \
 | 
						|
                        " throws an exception of type " #expected_exception \
 | 
						|
                        ".\n  Actual: it throws a different type.";         \
 | 
						|
      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
 | 
						|
    }                                                                       \
 | 
						|
    if (!gtest_caught_expected) {                                           \
 | 
						|
      gtest_msg.value = "Expected: " #statement                             \
 | 
						|
                        " throws an exception of type " #expected_exception \
 | 
						|
                        ".\n  Actual: it throws nothing.";                  \
 | 
						|
      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
 | 
						|
    }                                                                       \
 | 
						|
  } else /*NOLINT*/                                                         \
 | 
						|
    GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__)                   \
 | 
						|
        : fail(gtest_msg.value.c_str())
 | 
						|
 | 
						|
#if GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                \
 | 
						|
  catch (std::exception const& e) {                               \
 | 
						|
    gtest_msg.value = "it throws ";                               \
 | 
						|
    gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                  \
 | 
						|
    gtest_msg.value += " with description \"";                    \
 | 
						|
    gtest_msg.value += e.what();                                  \
 | 
						|
    gtest_msg.value += "\".";                                     \
 | 
						|
    goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
 | 
						|
  }
 | 
						|
 | 
						|
#else  // GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
 | 
						|
 | 
						|
#endif  // GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
#define GTEST_TEST_NO_THROW_(statement, fail) \
 | 
						|
  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 | 
						|
  if (::testing::internal::TrueWithString gtest_msg{}) { \
 | 
						|
    try { \
 | 
						|
      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 | 
						|
    } \
 | 
						|
    GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
 | 
						|
    catch (...) { \
 | 
						|
      gtest_msg.value = "it throws."; \
 | 
						|
      goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
 | 
						|
    } \
 | 
						|
  } else \
 | 
						|
    GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
 | 
						|
      fail(("Expected: " #statement " doesn't throw an exception.\n" \
 | 
						|
            "  Actual: " + gtest_msg.value).c_str())
 | 
						|
 | 
						|
#define GTEST_TEST_ANY_THROW_(statement, fail) \
 | 
						|
  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 | 
						|
  if (::testing::internal::AlwaysTrue()) { \
 | 
						|
    bool gtest_caught_any = false; \
 | 
						|
    try { \
 | 
						|
      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 | 
						|
    } \
 | 
						|
    catch (...) { \
 | 
						|
      gtest_caught_any = true; \
 | 
						|
    } \
 | 
						|
    if (!gtest_caught_any) { \
 | 
						|
      goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
 | 
						|
    } \
 | 
						|
  } else \
 | 
						|
    GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
 | 
						|
      fail("Expected: " #statement " throws an exception.\n" \
 | 
						|
           "  Actual: it doesn't.")
 | 
						|
 | 
						|
 | 
						|
// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
 | 
						|
// either a boolean expression or an AssertionResult. text is a textual
 | 
						|
// represenation of expression as it was passed into the EXPECT_TRUE.
 | 
						|
#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
 | 
						|
  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 | 
						|
  if (const ::testing::AssertionResult gtest_ar_ = \
 | 
						|
      ::testing::AssertionResult(expression)) \
 | 
						|
    ; \
 | 
						|
  else \
 | 
						|
    fail(::testing::internal::GetBoolAssertionFailureMessage(\
 | 
						|
        gtest_ar_, text, #actual, #expected).c_str())
 | 
						|
 | 
						|
#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
 | 
						|
  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 | 
						|
  if (::testing::internal::AlwaysTrue()) { \
 | 
						|
    ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
 | 
						|
    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 | 
						|
    if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
 | 
						|
      goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
 | 
						|
    } \
 | 
						|
  } else \
 | 
						|
    GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
 | 
						|
      fail("Expected: " #statement " doesn't generate new fatal " \
 | 
						|
           "failures in the current thread.\n" \
 | 
						|
           "  Actual: it does.")
 | 
						|
 | 
						|
// Expands to the name of the class that implements the given test.
 | 
						|
#define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
 | 
						|
  test_suite_name##_##test_name##_Test
 | 
						|
 | 
						|
// Helper macro for defining tests.
 | 
						|
#define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)      \
 | 
						|
  static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                \
 | 
						|
                "test_suite_name must not be empty");                         \
 | 
						|
  static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                      \
 | 
						|
                "test_name must not be empty");                               \
 | 
						|
  class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                    \
 | 
						|
      : public parent_class {                                                 \
 | 
						|
   public:                                                                    \
 | 
						|
    GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default;           \
 | 
						|
    ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
 | 
						|
    GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
 | 
						|
                                                           test_name));       \
 | 
						|
    GTEST_DISALLOW_MOVE_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
 | 
						|
                                                           test_name));       \
 | 
						|
                                                                              \
 | 
						|
   private:                                                                   \
 | 
						|
    void TestBody() override;                                                 \
 | 
						|
    static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;     \
 | 
						|
  };                                                                          \
 | 
						|
                                                                              \
 | 
						|
  ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,          \
 | 
						|
                                                    test_name)::test_info_ =  \
 | 
						|
      ::testing::internal::MakeAndRegisterTestInfo(                           \
 | 
						|
          #test_suite_name, #test_name, nullptr, nullptr,                     \
 | 
						|
          ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
 | 
						|
          ::testing::internal::SuiteApiResolver<                              \
 | 
						|
              parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),         \
 | 
						|
          ::testing::internal::SuiteApiResolver<                              \
 | 
						|
              parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),      \
 | 
						|
          new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(    \
 | 
						|
              test_suite_name, test_name)>);                                  \
 | 
						|
  void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
 | 
						|
 | 
						|
#endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
 |