1707 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1707 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2007, Google Inc.
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//     * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//     * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//     * Neither the name of Google Inc. nor the names of its
 | 
						|
// contributors may be used to endorse or promote products derived from
 | 
						|
// this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
 | 
						|
// Google Mock - a framework for writing C++ mock classes.
 | 
						|
//
 | 
						|
// The ACTION* family of macros can be used in a namespace scope to
 | 
						|
// define custom actions easily.  The syntax:
 | 
						|
//
 | 
						|
//   ACTION(name) { statements; }
 | 
						|
//
 | 
						|
// will define an action with the given name that executes the
 | 
						|
// statements.  The value returned by the statements will be used as
 | 
						|
// the return value of the action.  Inside the statements, you can
 | 
						|
// refer to the K-th (0-based) argument of the mock function by
 | 
						|
// 'argK', and refer to its type by 'argK_type'.  For example:
 | 
						|
//
 | 
						|
//   ACTION(IncrementArg1) {
 | 
						|
//     arg1_type temp = arg1;
 | 
						|
//     return ++(*temp);
 | 
						|
//   }
 | 
						|
//
 | 
						|
// allows you to write
 | 
						|
//
 | 
						|
//   ...WillOnce(IncrementArg1());
 | 
						|
//
 | 
						|
// You can also refer to the entire argument tuple and its type by
 | 
						|
// 'args' and 'args_type', and refer to the mock function type and its
 | 
						|
// return type by 'function_type' and 'return_type'.
 | 
						|
//
 | 
						|
// Note that you don't need to specify the types of the mock function
 | 
						|
// arguments.  However rest assured that your code is still type-safe:
 | 
						|
// you'll get a compiler error if *arg1 doesn't support the ++
 | 
						|
// operator, or if the type of ++(*arg1) isn't compatible with the
 | 
						|
// mock function's return type, for example.
 | 
						|
//
 | 
						|
// Sometimes you'll want to parameterize the action.   For that you can use
 | 
						|
// another macro:
 | 
						|
//
 | 
						|
//   ACTION_P(name, param_name) { statements; }
 | 
						|
//
 | 
						|
// For example:
 | 
						|
//
 | 
						|
//   ACTION_P(Add, n) { return arg0 + n; }
 | 
						|
//
 | 
						|
// will allow you to write:
 | 
						|
//
 | 
						|
//   ...WillOnce(Add(5));
 | 
						|
//
 | 
						|
// Note that you don't need to provide the type of the parameter
 | 
						|
// either.  If you need to reference the type of a parameter named
 | 
						|
// 'foo', you can write 'foo_type'.  For example, in the body of
 | 
						|
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
 | 
						|
// of 'n'.
 | 
						|
//
 | 
						|
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
 | 
						|
// multi-parameter actions.
 | 
						|
//
 | 
						|
// For the purpose of typing, you can view
 | 
						|
//
 | 
						|
//   ACTION_Pk(Foo, p1, ..., pk) { ... }
 | 
						|
//
 | 
						|
// as shorthand for
 | 
						|
//
 | 
						|
//   template <typename p1_type, ..., typename pk_type>
 | 
						|
//   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
 | 
						|
//
 | 
						|
// In particular, you can provide the template type arguments
 | 
						|
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
 | 
						|
// although usually you can rely on the compiler to infer the types
 | 
						|
// for you automatically.  You can assign the result of expression
 | 
						|
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
 | 
						|
// pk_type>.  This can be useful when composing actions.
 | 
						|
//
 | 
						|
// You can also overload actions with different numbers of parameters:
 | 
						|
//
 | 
						|
//   ACTION_P(Plus, a) { ... }
 | 
						|
//   ACTION_P2(Plus, a, b) { ... }
 | 
						|
//
 | 
						|
// While it's tempting to always use the ACTION* macros when defining
 | 
						|
// a new action, you should also consider implementing ActionInterface
 | 
						|
// or using MakePolymorphicAction() instead, especially if you need to
 | 
						|
// use the action a lot.  While these approaches require more work,
 | 
						|
// they give you more control on the types of the mock function
 | 
						|
// arguments and the action parameters, which in general leads to
 | 
						|
// better compiler error messages that pay off in the long run.  They
 | 
						|
// also allow overloading actions based on parameter types (as opposed
 | 
						|
// to just based on the number of parameters).
 | 
						|
//
 | 
						|
// CAVEAT:
 | 
						|
//
 | 
						|
// ACTION*() can only be used in a namespace scope as templates cannot be
 | 
						|
// declared inside of a local class.
 | 
						|
// Users can, however, define any local functors (e.g. a lambda) that
 | 
						|
// can be used as actions.
 | 
						|
//
 | 
						|
// MORE INFORMATION:
 | 
						|
//
 | 
						|
// To learn more about using these macros, please search for 'ACTION' on
 | 
						|
// https://github.com/google/googletest/blob/master/googlemock/docs/cook_book.md
 | 
						|
 | 
						|
// GOOGLETEST_CM0002 DO NOT DELETE
 | 
						|
 | 
						|
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 | 
						|
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 | 
						|
 | 
						|
#ifndef _WIN32_WCE
 | 
						|
# include <errno.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <functional>
 | 
						|
#include <memory>
 | 
						|
#include <string>
 | 
						|
#include <tuple>
 | 
						|
#include <type_traits>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
#include "gmock/internal/gmock-internal-utils.h"
 | 
						|
#include "gmock/internal/gmock-port.h"
 | 
						|
#include "gmock/internal/gmock-pp.h"
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
# pragma warning(push)
 | 
						|
# pragma warning(disable:4100)
 | 
						|
#endif
 | 
						|
 | 
						|
namespace testing {
 | 
						|
 | 
						|
// To implement an action Foo, define:
 | 
						|
//   1. a class FooAction that implements the ActionInterface interface, and
 | 
						|
//   2. a factory function that creates an Action object from a
 | 
						|
//      const FooAction*.
 | 
						|
//
 | 
						|
// The two-level delegation design follows that of Matcher, providing
 | 
						|
// consistency for extension developers.  It also eases ownership
 | 
						|
// management as Action objects can now be copied like plain values.
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
// BuiltInDefaultValueGetter<T, true>::Get() returns a
 | 
						|
// default-constructed T value.  BuiltInDefaultValueGetter<T,
 | 
						|
// false>::Get() crashes with an error.
 | 
						|
//
 | 
						|
// This primary template is used when kDefaultConstructible is true.
 | 
						|
template <typename T, bool kDefaultConstructible>
 | 
						|
struct BuiltInDefaultValueGetter {
 | 
						|
  static T Get() { return T(); }
 | 
						|
};
 | 
						|
template <typename T>
 | 
						|
struct BuiltInDefaultValueGetter<T, false> {
 | 
						|
  static T Get() {
 | 
						|
    Assert(false, __FILE__, __LINE__,
 | 
						|
           "Default action undefined for the function return type.");
 | 
						|
    return internal::Invalid<T>();
 | 
						|
    // The above statement will never be reached, but is required in
 | 
						|
    // order for this function to compile.
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
 | 
						|
// for type T, which is NULL when T is a raw pointer type, 0 when T is
 | 
						|
// a numeric type, false when T is bool, or "" when T is string or
 | 
						|
// std::string.  In addition, in C++11 and above, it turns a
 | 
						|
// default-constructed T value if T is default constructible.  For any
 | 
						|
// other type T, the built-in default T value is undefined, and the
 | 
						|
// function will abort the process.
 | 
						|
template <typename T>
 | 
						|
class BuiltInDefaultValue {
 | 
						|
 public:
 | 
						|
  // This function returns true if and only if type T has a built-in default
 | 
						|
  // value.
 | 
						|
  static bool Exists() {
 | 
						|
    return ::std::is_default_constructible<T>::value;
 | 
						|
  }
 | 
						|
 | 
						|
  static T Get() {
 | 
						|
    return BuiltInDefaultValueGetter<
 | 
						|
        T, ::std::is_default_constructible<T>::value>::Get();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// This partial specialization says that we use the same built-in
 | 
						|
// default value for T and const T.
 | 
						|
template <typename T>
 | 
						|
class BuiltInDefaultValue<const T> {
 | 
						|
 public:
 | 
						|
  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
 | 
						|
  static T Get() { return BuiltInDefaultValue<T>::Get(); }
 | 
						|
};
 | 
						|
 | 
						|
// This partial specialization defines the default values for pointer
 | 
						|
// types.
 | 
						|
template <typename T>
 | 
						|
class BuiltInDefaultValue<T*> {
 | 
						|
 public:
 | 
						|
  static bool Exists() { return true; }
 | 
						|
  static T* Get() { return nullptr; }
 | 
						|
};
 | 
						|
 | 
						|
// The following specializations define the default values for
 | 
						|
// specific types we care about.
 | 
						|
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
 | 
						|
  template <> \
 | 
						|
  class BuiltInDefaultValue<type> { \
 | 
						|
   public: \
 | 
						|
    static bool Exists() { return true; } \
 | 
						|
    static type Get() { return value; } \
 | 
						|
  }
 | 
						|
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
 | 
						|
 | 
						|
// There's no need for a default action for signed wchar_t, as that
 | 
						|
// type is the same as wchar_t for gcc, and invalid for MSVC.
 | 
						|
//
 | 
						|
// There's also no need for a default action for unsigned wchar_t, as
 | 
						|
// that type is the same as unsigned int for gcc, and invalid for
 | 
						|
// MSVC.
 | 
						|
#if GMOCK_WCHAR_T_IS_NATIVE_
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
 | 
						|
#endif
 | 
						|
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);  // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
 | 
						|
 | 
						|
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
 | 
						|
 | 
						|
// Simple two-arg form of std::disjunction.
 | 
						|
template <typename P, typename Q>
 | 
						|
using disjunction = typename ::std::conditional<P::value, P, Q>::type;
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
 | 
						|
// When an unexpected function call is encountered, Google Mock will
 | 
						|
// let it return a default value if the user has specified one for its
 | 
						|
// return type, or if the return type has a built-in default value;
 | 
						|
// otherwise Google Mock won't know what value to return and will have
 | 
						|
// to abort the process.
 | 
						|
//
 | 
						|
// The DefaultValue<T> class allows a user to specify the
 | 
						|
// default value for a type T that is both copyable and publicly
 | 
						|
// destructible (i.e. anything that can be used as a function return
 | 
						|
// type).  The usage is:
 | 
						|
//
 | 
						|
//   // Sets the default value for type T to be foo.
 | 
						|
//   DefaultValue<T>::Set(foo);
 | 
						|
template <typename T>
 | 
						|
class DefaultValue {
 | 
						|
 public:
 | 
						|
  // Sets the default value for type T; requires T to be
 | 
						|
  // copy-constructable and have a public destructor.
 | 
						|
  static void Set(T x) {
 | 
						|
    delete producer_;
 | 
						|
    producer_ = new FixedValueProducer(x);
 | 
						|
  }
 | 
						|
 | 
						|
  // Provides a factory function to be called to generate the default value.
 | 
						|
  // This method can be used even if T is only move-constructible, but it is not
 | 
						|
  // limited to that case.
 | 
						|
  typedef T (*FactoryFunction)();
 | 
						|
  static void SetFactory(FactoryFunction factory) {
 | 
						|
    delete producer_;
 | 
						|
    producer_ = new FactoryValueProducer(factory);
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsets the default value for type T.
 | 
						|
  static void Clear() {
 | 
						|
    delete producer_;
 | 
						|
    producer_ = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns true if and only if the user has set the default value for type T.
 | 
						|
  static bool IsSet() { return producer_ != nullptr; }
 | 
						|
 | 
						|
  // Returns true if T has a default return value set by the user or there
 | 
						|
  // exists a built-in default value.
 | 
						|
  static bool Exists() {
 | 
						|
    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the default value for type T if the user has set one;
 | 
						|
  // otherwise returns the built-in default value. Requires that Exists()
 | 
						|
  // is true, which ensures that the return value is well-defined.
 | 
						|
  static T Get() {
 | 
						|
    return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
 | 
						|
                                : producer_->Produce();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  class ValueProducer {
 | 
						|
   public:
 | 
						|
    virtual ~ValueProducer() {}
 | 
						|
    virtual T Produce() = 0;
 | 
						|
  };
 | 
						|
 | 
						|
  class FixedValueProducer : public ValueProducer {
 | 
						|
   public:
 | 
						|
    explicit FixedValueProducer(T value) : value_(value) {}
 | 
						|
    T Produce() override { return value_; }
 | 
						|
 | 
						|
   private:
 | 
						|
    const T value_;
 | 
						|
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
 | 
						|
  };
 | 
						|
 | 
						|
  class FactoryValueProducer : public ValueProducer {
 | 
						|
   public:
 | 
						|
    explicit FactoryValueProducer(FactoryFunction factory)
 | 
						|
        : factory_(factory) {}
 | 
						|
    T Produce() override { return factory_(); }
 | 
						|
 | 
						|
   private:
 | 
						|
    const FactoryFunction factory_;
 | 
						|
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
 | 
						|
  };
 | 
						|
 | 
						|
  static ValueProducer* producer_;
 | 
						|
};
 | 
						|
 | 
						|
// This partial specialization allows a user to set default values for
 | 
						|
// reference types.
 | 
						|
template <typename T>
 | 
						|
class DefaultValue<T&> {
 | 
						|
 public:
 | 
						|
  // Sets the default value for type T&.
 | 
						|
  static void Set(T& x) {  // NOLINT
 | 
						|
    address_ = &x;
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsets the default value for type T&.
 | 
						|
  static void Clear() { address_ = nullptr; }
 | 
						|
 | 
						|
  // Returns true if and only if the user has set the default value for type T&.
 | 
						|
  static bool IsSet() { return address_ != nullptr; }
 | 
						|
 | 
						|
  // Returns true if T has a default return value set by the user or there
 | 
						|
  // exists a built-in default value.
 | 
						|
  static bool Exists() {
 | 
						|
    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the default value for type T& if the user has set one;
 | 
						|
  // otherwise returns the built-in default value if there is one;
 | 
						|
  // otherwise aborts the process.
 | 
						|
  static T& Get() {
 | 
						|
    return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
 | 
						|
                               : *address_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  static T* address_;
 | 
						|
};
 | 
						|
 | 
						|
// This specialization allows DefaultValue<void>::Get() to
 | 
						|
// compile.
 | 
						|
template <>
 | 
						|
class DefaultValue<void> {
 | 
						|
 public:
 | 
						|
  static bool Exists() { return true; }
 | 
						|
  static void Get() {}
 | 
						|
};
 | 
						|
 | 
						|
// Points to the user-set default value for type T.
 | 
						|
template <typename T>
 | 
						|
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
 | 
						|
 | 
						|
// Points to the user-set default value for type T&.
 | 
						|
template <typename T>
 | 
						|
T* DefaultValue<T&>::address_ = nullptr;
 | 
						|
 | 
						|
// Implement this interface to define an action for function type F.
 | 
						|
template <typename F>
 | 
						|
class ActionInterface {
 | 
						|
 public:
 | 
						|
  typedef typename internal::Function<F>::Result Result;
 | 
						|
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
  ActionInterface() {}
 | 
						|
  virtual ~ActionInterface() {}
 | 
						|
 | 
						|
  // Performs the action.  This method is not const, as in general an
 | 
						|
  // action can have side effects and be stateful.  For example, a
 | 
						|
  // get-the-next-element-from-the-collection action will need to
 | 
						|
  // remember the current element.
 | 
						|
  virtual Result Perform(const ArgumentTuple& args) = 0;
 | 
						|
 | 
						|
 private:
 | 
						|
  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
 | 
						|
};
 | 
						|
 | 
						|
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
 | 
						|
// object that represents an action to be taken when a mock function
 | 
						|
// of type F is called.  The implementation of Action<T> is just a
 | 
						|
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
 | 
						|
// You can view an object implementing ActionInterface<F> as a
 | 
						|
// concrete action (including its current state), and an Action<F>
 | 
						|
// object as a handle to it.
 | 
						|
template <typename F>
 | 
						|
class Action {
 | 
						|
  // Adapter class to allow constructing Action from a legacy ActionInterface.
 | 
						|
  // New code should create Actions from functors instead.
 | 
						|
  struct ActionAdapter {
 | 
						|
    // Adapter must be copyable to satisfy std::function requirements.
 | 
						|
    ::std::shared_ptr<ActionInterface<F>> impl_;
 | 
						|
 | 
						|
    template <typename... Args>
 | 
						|
    typename internal::Function<F>::Result operator()(Args&&... args) {
 | 
						|
      return impl_->Perform(
 | 
						|
          ::std::forward_as_tuple(::std::forward<Args>(args)...));
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template <typename G>
 | 
						|
  using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
 | 
						|
 | 
						|
 public:
 | 
						|
  typedef typename internal::Function<F>::Result Result;
 | 
						|
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
  // Constructs a null Action.  Needed for storing Action objects in
 | 
						|
  // STL containers.
 | 
						|
  Action() {}
 | 
						|
 | 
						|
  // Construct an Action from a specified callable.
 | 
						|
  // This cannot take std::function directly, because then Action would not be
 | 
						|
  // directly constructible from lambda (it would require two conversions).
 | 
						|
  template <
 | 
						|
      typename G,
 | 
						|
      typename = typename std::enable_if<internal::disjunction<
 | 
						|
          IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
 | 
						|
                                                        G>>::value>::type>
 | 
						|
  Action(G&& fun) {  // NOLINT
 | 
						|
    Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
 | 
						|
  }
 | 
						|
 | 
						|
  // Constructs an Action from its implementation.
 | 
						|
  explicit Action(ActionInterface<F>* impl)
 | 
						|
      : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
 | 
						|
 | 
						|
  // This constructor allows us to turn an Action<Func> object into an
 | 
						|
  // Action<F>, as long as F's arguments can be implicitly converted
 | 
						|
  // to Func's and Func's return type can be implicitly converted to F's.
 | 
						|
  template <typename Func>
 | 
						|
  explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
 | 
						|
 | 
						|
  // Returns true if and only if this is the DoDefault() action.
 | 
						|
  bool IsDoDefault() const { return fun_ == nullptr; }
 | 
						|
 | 
						|
  // Performs the action.  Note that this method is const even though
 | 
						|
  // the corresponding method in ActionInterface is not.  The reason
 | 
						|
  // is that a const Action<F> means that it cannot be re-bound to
 | 
						|
  // another concrete action, not that the concrete action it binds to
 | 
						|
  // cannot change state.  (Think of the difference between a const
 | 
						|
  // pointer and a pointer to const.)
 | 
						|
  Result Perform(ArgumentTuple args) const {
 | 
						|
    if (IsDoDefault()) {
 | 
						|
      internal::IllegalDoDefault(__FILE__, __LINE__);
 | 
						|
    }
 | 
						|
    return internal::Apply(fun_, ::std::move(args));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename G>
 | 
						|
  friend class Action;
 | 
						|
 | 
						|
  template <typename G>
 | 
						|
  void Init(G&& g, ::std::true_type) {
 | 
						|
    fun_ = ::std::forward<G>(g);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename G>
 | 
						|
  void Init(G&& g, ::std::false_type) {
 | 
						|
    fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename FunctionImpl>
 | 
						|
  struct IgnoreArgs {
 | 
						|
    template <typename... Args>
 | 
						|
    Result operator()(const Args&...) const {
 | 
						|
      return function_impl();
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionImpl function_impl;
 | 
						|
  };
 | 
						|
 | 
						|
  // fun_ is an empty function if and only if this is the DoDefault() action.
 | 
						|
  ::std::function<F> fun_;
 | 
						|
};
 | 
						|
 | 
						|
// The PolymorphicAction class template makes it easy to implement a
 | 
						|
// polymorphic action (i.e. an action that can be used in mock
 | 
						|
// functions of than one type, e.g. Return()).
 | 
						|
//
 | 
						|
// To define a polymorphic action, a user first provides a COPYABLE
 | 
						|
// implementation class that has a Perform() method template:
 | 
						|
//
 | 
						|
//   class FooAction {
 | 
						|
//    public:
 | 
						|
//     template <typename Result, typename ArgumentTuple>
 | 
						|
//     Result Perform(const ArgumentTuple& args) const {
 | 
						|
//       // Processes the arguments and returns a result, using
 | 
						|
//       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
 | 
						|
//     }
 | 
						|
//     ...
 | 
						|
//   };
 | 
						|
//
 | 
						|
// Then the user creates the polymorphic action using
 | 
						|
// MakePolymorphicAction(object) where object has type FooAction.  See
 | 
						|
// the definition of Return(void) and SetArgumentPointee<N>(value) for
 | 
						|
// complete examples.
 | 
						|
template <typename Impl>
 | 
						|
class PolymorphicAction {
 | 
						|
 public:
 | 
						|
  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
 | 
						|
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    return Action<F>(new MonomorphicImpl<F>(impl_));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename F>
 | 
						|
  class MonomorphicImpl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename internal::Function<F>::Result Result;
 | 
						|
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
 | 
						|
 | 
						|
    Result Perform(const ArgumentTuple& args) override {
 | 
						|
      return impl_.template Perform<Result>(args);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    Impl impl_;
 | 
						|
  };
 | 
						|
 | 
						|
  Impl impl_;
 | 
						|
};
 | 
						|
 | 
						|
// Creates an Action from its implementation and returns it.  The
 | 
						|
// created Action object owns the implementation.
 | 
						|
template <typename F>
 | 
						|
Action<F> MakeAction(ActionInterface<F>* impl) {
 | 
						|
  return Action<F>(impl);
 | 
						|
}
 | 
						|
 | 
						|
// Creates a polymorphic action from its implementation.  This is
 | 
						|
// easier to use than the PolymorphicAction<Impl> constructor as it
 | 
						|
// doesn't require you to explicitly write the template argument, e.g.
 | 
						|
//
 | 
						|
//   MakePolymorphicAction(foo);
 | 
						|
// vs
 | 
						|
//   PolymorphicAction<TypeOfFoo>(foo);
 | 
						|
template <typename Impl>
 | 
						|
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
 | 
						|
  return PolymorphicAction<Impl>(impl);
 | 
						|
}
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
// Helper struct to specialize ReturnAction to execute a move instead of a copy
 | 
						|
// on return. Useful for move-only types, but could be used on any type.
 | 
						|
template <typename T>
 | 
						|
struct ByMoveWrapper {
 | 
						|
  explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
 | 
						|
  T payload;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic Return(x) action, which can be used in
 | 
						|
// any function that returns the type of x, regardless of the argument
 | 
						|
// types.
 | 
						|
//
 | 
						|
// Note: The value passed into Return must be converted into
 | 
						|
// Function<F>::Result when this action is cast to Action<F> rather than
 | 
						|
// when that action is performed. This is important in scenarios like
 | 
						|
//
 | 
						|
// MOCK_METHOD1(Method, T(U));
 | 
						|
// ...
 | 
						|
// {
 | 
						|
//   Foo foo;
 | 
						|
//   X x(&foo);
 | 
						|
//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
 | 
						|
// }
 | 
						|
//
 | 
						|
// In the example above the variable x holds reference to foo which leaves
 | 
						|
// scope and gets destroyed.  If copying X just copies a reference to foo,
 | 
						|
// that copy will be left with a hanging reference.  If conversion to T
 | 
						|
// makes a copy of foo, the above code is safe. To support that scenario, we
 | 
						|
// need to make sure that the type conversion happens inside the EXPECT_CALL
 | 
						|
// statement, and conversion of the result of Return to Action<T(U)> is a
 | 
						|
// good place for that.
 | 
						|
//
 | 
						|
// The real life example of the above scenario happens when an invocation
 | 
						|
// of gtl::Container() is passed into Return.
 | 
						|
//
 | 
						|
template <typename R>
 | 
						|
class ReturnAction {
 | 
						|
 public:
 | 
						|
  // Constructs a ReturnAction object from the value to be returned.
 | 
						|
  // 'value' is passed by value instead of by const reference in order
 | 
						|
  // to allow Return("string literal") to compile.
 | 
						|
  explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
 | 
						|
 | 
						|
  // This template type conversion operator allows Return(x) to be
 | 
						|
  // used in ANY function that returns x's type.
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {  // NOLINT
 | 
						|
    // Assert statement belongs here because this is the best place to verify
 | 
						|
    // conditions on F. It produces the clearest error messages
 | 
						|
    // in most compilers.
 | 
						|
    // Impl really belongs in this scope as a local class but can't
 | 
						|
    // because MSVC produces duplicate symbols in different translation units
 | 
						|
    // in this case. Until MS fixes that bug we put Impl into the class scope
 | 
						|
    // and put the typedef both here (for use in assert statement) and
 | 
						|
    // in the Impl class. But both definitions must be the same.
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    GTEST_COMPILE_ASSERT_(
 | 
						|
        !std::is_reference<Result>::value,
 | 
						|
        use_ReturnRef_instead_of_Return_to_return_a_reference);
 | 
						|
    static_assert(!std::is_void<Result>::value,
 | 
						|
                  "Can't use Return() on an action expected to return `void`.");
 | 
						|
    return Action<F>(new Impl<R, F>(value_));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // Implements the Return(x) action for a particular function type F.
 | 
						|
  template <typename R_, typename F>
 | 
						|
  class Impl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    // The implicit cast is necessary when Result has more than one
 | 
						|
    // single-argument constructor (e.g. Result is std::vector<int>) and R
 | 
						|
    // has a type conversion operator template.  In that case, value_(value)
 | 
						|
    // won't compile as the compiler doesn't known which constructor of
 | 
						|
    // Result to call.  ImplicitCast_ forces the compiler to convert R to
 | 
						|
    // Result without considering explicit constructors, thus resolving the
 | 
						|
    // ambiguity. value_ is then initialized using its copy constructor.
 | 
						|
    explicit Impl(const std::shared_ptr<R>& value)
 | 
						|
        : value_before_cast_(*value),
 | 
						|
          value_(ImplicitCast_<Result>(value_before_cast_)) {}
 | 
						|
 | 
						|
    Result Perform(const ArgumentTuple&) override { return value_; }
 | 
						|
 | 
						|
   private:
 | 
						|
    GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
 | 
						|
                          Result_cannot_be_a_reference_type);
 | 
						|
    // We save the value before casting just in case it is being cast to a
 | 
						|
    // wrapper type.
 | 
						|
    R value_before_cast_;
 | 
						|
    Result value_;
 | 
						|
 | 
						|
    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
 | 
						|
  };
 | 
						|
 | 
						|
  // Partially specialize for ByMoveWrapper. This version of ReturnAction will
 | 
						|
  // move its contents instead.
 | 
						|
  template <typename R_, typename F>
 | 
						|
  class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit Impl(const std::shared_ptr<R>& wrapper)
 | 
						|
        : performed_(false), wrapper_(wrapper) {}
 | 
						|
 | 
						|
    Result Perform(const ArgumentTuple&) override {
 | 
						|
      GTEST_CHECK_(!performed_)
 | 
						|
          << "A ByMove() action should only be performed once.";
 | 
						|
      performed_ = true;
 | 
						|
      return std::move(wrapper_->payload);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    bool performed_;
 | 
						|
    const std::shared_ptr<R> wrapper_;
 | 
						|
  };
 | 
						|
 | 
						|
  const std::shared_ptr<R> value_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the ReturnNull() action.
 | 
						|
class ReturnNullAction {
 | 
						|
 public:
 | 
						|
  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
 | 
						|
  // this is enforced by returning nullptr, and in non-C++11 by asserting a
 | 
						|
  // pointer type on compile time.
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  static Result Perform(const ArgumentTuple&) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the Return() action.
 | 
						|
class ReturnVoidAction {
 | 
						|
 public:
 | 
						|
  // Allows Return() to be used in any void-returning function.
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  static void Perform(const ArgumentTuple&) {
 | 
						|
    static_assert(std::is_void<Result>::value, "Result should be void.");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic ReturnRef(x) action, which can be used
 | 
						|
// in any function that returns a reference to the type of x,
 | 
						|
// regardless of the argument types.
 | 
						|
template <typename T>
 | 
						|
class ReturnRefAction {
 | 
						|
 public:
 | 
						|
  // Constructs a ReturnRefAction object from the reference to be returned.
 | 
						|
  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
 | 
						|
 | 
						|
  // This template type conversion operator allows ReturnRef(x) to be
 | 
						|
  // used in ANY function that returns a reference to x's type.
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    // Asserts that the function return type is a reference.  This
 | 
						|
    // catches the user error of using ReturnRef(x) when Return(x)
 | 
						|
    // should be used, and generates some helpful error message.
 | 
						|
    GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
 | 
						|
                          use_Return_instead_of_ReturnRef_to_return_a_value);
 | 
						|
    return Action<F>(new Impl<F>(ref_));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // Implements the ReturnRef(x) action for a particular function type F.
 | 
						|
  template <typename F>
 | 
						|
  class Impl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
 | 
						|
 | 
						|
    Result Perform(const ArgumentTuple&) override { return ref_; }
 | 
						|
 | 
						|
   private:
 | 
						|
    T& ref_;
 | 
						|
  };
 | 
						|
 | 
						|
  T& ref_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
 | 
						|
// used in any function that returns a reference to the type of x,
 | 
						|
// regardless of the argument types.
 | 
						|
template <typename T>
 | 
						|
class ReturnRefOfCopyAction {
 | 
						|
 public:
 | 
						|
  // Constructs a ReturnRefOfCopyAction object from the reference to
 | 
						|
  // be returned.
 | 
						|
  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
 | 
						|
 | 
						|
  // This template type conversion operator allows ReturnRefOfCopy(x) to be
 | 
						|
  // used in ANY function that returns a reference to x's type.
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    // Asserts that the function return type is a reference.  This
 | 
						|
    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
 | 
						|
    // should be used, and generates some helpful error message.
 | 
						|
    GTEST_COMPILE_ASSERT_(
 | 
						|
        std::is_reference<Result>::value,
 | 
						|
        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
 | 
						|
    return Action<F>(new Impl<F>(value_));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
 | 
						|
  template <typename F>
 | 
						|
  class Impl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit Impl(const T& value) : value_(value) {}  // NOLINT
 | 
						|
 | 
						|
    Result Perform(const ArgumentTuple&) override { return value_; }
 | 
						|
 | 
						|
   private:
 | 
						|
    T value_;
 | 
						|
  };
 | 
						|
 | 
						|
  const T value_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic ReturnRoundRobin(v) action, which can be
 | 
						|
// used in any function that returns the element_type of v.
 | 
						|
template <typename T>
 | 
						|
class ReturnRoundRobinAction {
 | 
						|
 public:
 | 
						|
  explicit ReturnRoundRobinAction(std::vector<T> values) {
 | 
						|
    GTEST_CHECK_(!values.empty())
 | 
						|
        << "ReturnRoundRobin requires at least one element.";
 | 
						|
    state_->values = std::move(values);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  T operator()(Args&&...) const {
 | 
						|
     return state_->Next();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  struct State {
 | 
						|
    T Next() {
 | 
						|
      T ret_val = values[i++];
 | 
						|
      if (i == values.size()) i = 0;
 | 
						|
      return ret_val;
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<T> values;
 | 
						|
    size_t i = 0;
 | 
						|
  };
 | 
						|
  std::shared_ptr<State> state_ = std::make_shared<State>();
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic DoDefault() action.
 | 
						|
class DoDefaultAction {
 | 
						|
 public:
 | 
						|
  // This template type conversion operator allows DoDefault() to be
 | 
						|
  // used in any function.
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const { return Action<F>(); }  // NOLINT
 | 
						|
};
 | 
						|
 | 
						|
// Implements the Assign action to set a given pointer referent to a
 | 
						|
// particular value.
 | 
						|
template <typename T1, typename T2>
 | 
						|
class AssignAction {
 | 
						|
 public:
 | 
						|
  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
 | 
						|
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  void Perform(const ArgumentTuple& /* args */) const {
 | 
						|
    *ptr_ = value_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  T1* const ptr_;
 | 
						|
  const T2 value_;
 | 
						|
};
 | 
						|
 | 
						|
#if !GTEST_OS_WINDOWS_MOBILE
 | 
						|
 | 
						|
// Implements the SetErrnoAndReturn action to simulate return from
 | 
						|
// various system calls and libc functions.
 | 
						|
template <typename T>
 | 
						|
class SetErrnoAndReturnAction {
 | 
						|
 public:
 | 
						|
  SetErrnoAndReturnAction(int errno_value, T result)
 | 
						|
      : errno_(errno_value),
 | 
						|
        result_(result) {}
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  Result Perform(const ArgumentTuple& /* args */) const {
 | 
						|
    errno = errno_;
 | 
						|
    return result_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  const int errno_;
 | 
						|
  const T result_;
 | 
						|
};
 | 
						|
 | 
						|
#endif  // !GTEST_OS_WINDOWS_MOBILE
 | 
						|
 | 
						|
// Implements the SetArgumentPointee<N>(x) action for any function
 | 
						|
// whose N-th argument (0-based) is a pointer to x's type.
 | 
						|
template <size_t N, typename A, typename = void>
 | 
						|
struct SetArgumentPointeeAction {
 | 
						|
  A value;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(const Args&... args) const {
 | 
						|
    *::std::get<N>(std::tie(args...)) = value;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the Invoke(object_ptr, &Class::Method) action.
 | 
						|
template <class Class, typename MethodPtr>
 | 
						|
struct InvokeMethodAction {
 | 
						|
  Class* const obj_ptr;
 | 
						|
  const MethodPtr method_ptr;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  auto operator()(Args&&... args) const
 | 
						|
      -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
 | 
						|
    return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the InvokeWithoutArgs(f) action.  The template argument
 | 
						|
// FunctionImpl is the implementation type of f, which can be either a
 | 
						|
// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
 | 
						|
// Action<F> as long as f's type is compatible with F.
 | 
						|
template <typename FunctionImpl>
 | 
						|
struct InvokeWithoutArgsAction {
 | 
						|
  FunctionImpl function_impl;
 | 
						|
 | 
						|
  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
 | 
						|
  // compatible with f.
 | 
						|
  template <typename... Args>
 | 
						|
  auto operator()(const Args&...) -> decltype(function_impl()) {
 | 
						|
    return function_impl();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
 | 
						|
template <class Class, typename MethodPtr>
 | 
						|
struct InvokeMethodWithoutArgsAction {
 | 
						|
  Class* const obj_ptr;
 | 
						|
  const MethodPtr method_ptr;
 | 
						|
 | 
						|
  using ReturnType =
 | 
						|
      decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  ReturnType operator()(const Args&...) const {
 | 
						|
    return (obj_ptr->*method_ptr)();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the IgnoreResult(action) action.
 | 
						|
template <typename A>
 | 
						|
class IgnoreResultAction {
 | 
						|
 public:
 | 
						|
  explicit IgnoreResultAction(const A& action) : action_(action) {}
 | 
						|
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    // Assert statement belongs here because this is the best place to verify
 | 
						|
    // conditions on F. It produces the clearest error messages
 | 
						|
    // in most compilers.
 | 
						|
    // Impl really belongs in this scope as a local class but can't
 | 
						|
    // because MSVC produces duplicate symbols in different translation units
 | 
						|
    // in this case. Until MS fixes that bug we put Impl into the class scope
 | 
						|
    // and put the typedef both here (for use in assert statement) and
 | 
						|
    // in the Impl class. But both definitions must be the same.
 | 
						|
    typedef typename internal::Function<F>::Result Result;
 | 
						|
 | 
						|
    // Asserts at compile time that F returns void.
 | 
						|
    static_assert(std::is_void<Result>::value, "Result type should be void.");
 | 
						|
 | 
						|
    return Action<F>(new Impl<F>(action_));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename F>
 | 
						|
  class Impl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename internal::Function<F>::Result Result;
 | 
						|
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit Impl(const A& action) : action_(action) {}
 | 
						|
 | 
						|
    void Perform(const ArgumentTuple& args) override {
 | 
						|
      // Performs the action and ignores its result.
 | 
						|
      action_.Perform(args);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    // Type OriginalFunction is the same as F except that its return
 | 
						|
    // type is IgnoredValue.
 | 
						|
    typedef typename internal::Function<F>::MakeResultIgnoredValue
 | 
						|
        OriginalFunction;
 | 
						|
 | 
						|
    const Action<OriginalFunction> action_;
 | 
						|
  };
 | 
						|
 | 
						|
  const A action_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename InnerAction, size_t... I>
 | 
						|
struct WithArgsAction {
 | 
						|
  InnerAction action;
 | 
						|
 | 
						|
  // The inner action could be anything convertible to Action<X>.
 | 
						|
  // We use the conversion operator to detect the signature of the inner Action.
 | 
						|
  template <typename R, typename... Args>
 | 
						|
  operator Action<R(Args...)>() const {  // NOLINT
 | 
						|
    using TupleType = std::tuple<Args...>;
 | 
						|
    Action<R(typename std::tuple_element<I, TupleType>::type...)>
 | 
						|
        converted(action);
 | 
						|
 | 
						|
    return [converted](Args... args) -> R {
 | 
						|
      return converted.Perform(std::forward_as_tuple(
 | 
						|
        std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
 | 
						|
    };
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename... Actions>
 | 
						|
struct DoAllAction {
 | 
						|
 private:
 | 
						|
  template <typename T>
 | 
						|
  using NonFinalType =
 | 
						|
      typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
 | 
						|
 | 
						|
  template <typename ActionT, size_t... I>
 | 
						|
  std::vector<ActionT> Convert(IndexSequence<I...>) const {
 | 
						|
    return {ActionT(std::get<I>(actions))...};
 | 
						|
  }
 | 
						|
 | 
						|
 public:
 | 
						|
  std::tuple<Actions...> actions;
 | 
						|
 | 
						|
  template <typename R, typename... Args>
 | 
						|
  operator Action<R(Args...)>() const {  // NOLINT
 | 
						|
    struct Op {
 | 
						|
      std::vector<Action<void(NonFinalType<Args>...)>> converted;
 | 
						|
      Action<R(Args...)> last;
 | 
						|
      R operator()(Args... args) const {
 | 
						|
        auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
 | 
						|
        for (auto& a : converted) {
 | 
						|
          a.Perform(tuple_args);
 | 
						|
        }
 | 
						|
        return last.Perform(std::move(tuple_args));
 | 
						|
      }
 | 
						|
    };
 | 
						|
    return Op{Convert<Action<void(NonFinalType<Args>...)>>(
 | 
						|
                  MakeIndexSequence<sizeof...(Actions) - 1>()),
 | 
						|
              std::get<sizeof...(Actions) - 1>(actions)};
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T, typename... Params>
 | 
						|
struct ReturnNewAction {
 | 
						|
  T* operator()() const {
 | 
						|
    return internal::Apply(
 | 
						|
        [](const Params&... unpacked_params) {
 | 
						|
          return new T(unpacked_params...);
 | 
						|
        },
 | 
						|
        params);
 | 
						|
  }
 | 
						|
  std::tuple<Params...> params;
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k>
 | 
						|
struct ReturnArgAction {
 | 
						|
  template <typename... Args>
 | 
						|
  auto operator()(const Args&... args) const ->
 | 
						|
      typename std::tuple_element<k, std::tuple<Args...>>::type {
 | 
						|
    return std::get<k>(std::tie(args...));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k, typename Ptr>
 | 
						|
struct SaveArgAction {
 | 
						|
  Ptr pointer;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(const Args&... args) const {
 | 
						|
    *pointer = std::get<k>(std::tie(args...));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k, typename Ptr>
 | 
						|
struct SaveArgPointeeAction {
 | 
						|
  Ptr pointer;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(const Args&... args) const {
 | 
						|
    *pointer = *std::get<k>(std::tie(args...));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k, typename T>
 | 
						|
struct SetArgRefereeAction {
 | 
						|
  T value;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(Args&&... args) const {
 | 
						|
    using argk_type =
 | 
						|
        typename ::std::tuple_element<k, std::tuple<Args...>>::type;
 | 
						|
    static_assert(std::is_lvalue_reference<argk_type>::value,
 | 
						|
                  "Argument must be a reference type.");
 | 
						|
    std::get<k>(std::tie(args...)) = value;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k, typename I1, typename I2>
 | 
						|
struct SetArrayArgumentAction {
 | 
						|
  I1 first;
 | 
						|
  I2 last;
 | 
						|
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(const Args&... args) const {
 | 
						|
    auto value = std::get<k>(std::tie(args...));
 | 
						|
    for (auto it = first; it != last; ++it, (void)++value) {
 | 
						|
      *value = *it;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <size_t k>
 | 
						|
struct DeleteArgAction {
 | 
						|
  template <typename... Args>
 | 
						|
  void operator()(const Args&... args) const {
 | 
						|
    delete std::get<k>(std::tie(args...));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename Ptr>
 | 
						|
struct ReturnPointeeAction {
 | 
						|
  Ptr pointer;
 | 
						|
  template <typename... Args>
 | 
						|
  auto operator()(const Args&...) const -> decltype(*pointer) {
 | 
						|
    return *pointer;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
#if GTEST_HAS_EXCEPTIONS
 | 
						|
template <typename T>
 | 
						|
struct ThrowAction {
 | 
						|
  T exception;
 | 
						|
  // We use a conversion operator to adapt to any return type.
 | 
						|
  template <typename R, typename... Args>
 | 
						|
  operator Action<R(Args...)>() const {  // NOLINT
 | 
						|
    T copy = exception;
 | 
						|
    return [copy](Args...) -> R { throw copy; };
 | 
						|
  }
 | 
						|
};
 | 
						|
#endif  // GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
 | 
						|
// An Unused object can be implicitly constructed from ANY value.
 | 
						|
// This is handy when defining actions that ignore some or all of the
 | 
						|
// mock function arguments.  For example, given
 | 
						|
//
 | 
						|
//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
 | 
						|
//   MOCK_METHOD3(Bar, double(int index, double x, double y));
 | 
						|
//
 | 
						|
// instead of
 | 
						|
//
 | 
						|
//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
 | 
						|
//     return sqrt(x*x + y*y);
 | 
						|
//   }
 | 
						|
//   double DistanceToOriginWithIndex(int index, double x, double y) {
 | 
						|
//     return sqrt(x*x + y*y);
 | 
						|
//   }
 | 
						|
//   ...
 | 
						|
//   EXPECT_CALL(mock, Foo("abc", _, _))
 | 
						|
//       .WillOnce(Invoke(DistanceToOriginWithLabel));
 | 
						|
//   EXPECT_CALL(mock, Bar(5, _, _))
 | 
						|
//       .WillOnce(Invoke(DistanceToOriginWithIndex));
 | 
						|
//
 | 
						|
// you could write
 | 
						|
//
 | 
						|
//   // We can declare any uninteresting argument as Unused.
 | 
						|
//   double DistanceToOrigin(Unused, double x, double y) {
 | 
						|
//     return sqrt(x*x + y*y);
 | 
						|
//   }
 | 
						|
//   ...
 | 
						|
//   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
 | 
						|
//   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
 | 
						|
typedef internal::IgnoredValue Unused;
 | 
						|
 | 
						|
// Creates an action that does actions a1, a2, ..., sequentially in
 | 
						|
// each invocation. All but the last action will have a readonly view of the
 | 
						|
// arguments.
 | 
						|
template <typename... Action>
 | 
						|
internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
 | 
						|
    Action&&... action) {
 | 
						|
  return {std::forward_as_tuple(std::forward<Action>(action)...)};
 | 
						|
}
 | 
						|
 | 
						|
// WithArg<k>(an_action) creates an action that passes the k-th
 | 
						|
// (0-based) argument of the mock function to an_action and performs
 | 
						|
// it.  It adapts an action accepting one argument to one that accepts
 | 
						|
// multiple arguments.  For convenience, we also provide
 | 
						|
// WithArgs<k>(an_action) (defined below) as a synonym.
 | 
						|
template <size_t k, typename InnerAction>
 | 
						|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
 | 
						|
WithArg(InnerAction&& action) {
 | 
						|
  return {std::forward<InnerAction>(action)};
 | 
						|
}
 | 
						|
 | 
						|
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
 | 
						|
// the selected arguments of the mock function to an_action and
 | 
						|
// performs it.  It serves as an adaptor between actions with
 | 
						|
// different argument lists.
 | 
						|
template <size_t k, size_t... ks, typename InnerAction>
 | 
						|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
 | 
						|
WithArgs(InnerAction&& action) {
 | 
						|
  return {std::forward<InnerAction>(action)};
 | 
						|
}
 | 
						|
 | 
						|
// WithoutArgs(inner_action) can be used in a mock function with a
 | 
						|
// non-empty argument list to perform inner_action, which takes no
 | 
						|
// argument.  In other words, it adapts an action accepting no
 | 
						|
// argument to one that accepts (and ignores) arguments.
 | 
						|
template <typename InnerAction>
 | 
						|
internal::WithArgsAction<typename std::decay<InnerAction>::type>
 | 
						|
WithoutArgs(InnerAction&& action) {
 | 
						|
  return {std::forward<InnerAction>(action)};
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns 'value'.  'value' is passed by value
 | 
						|
// instead of const reference - otherwise Return("string literal")
 | 
						|
// will trigger a compiler error about using array as initializer.
 | 
						|
template <typename R>
 | 
						|
internal::ReturnAction<R> Return(R value) {
 | 
						|
  return internal::ReturnAction<R>(std::move(value));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns NULL.
 | 
						|
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
 | 
						|
  return MakePolymorphicAction(internal::ReturnNullAction());
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns from a void function.
 | 
						|
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
 | 
						|
  return MakePolymorphicAction(internal::ReturnVoidAction());
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns the reference to a variable.
 | 
						|
template <typename R>
 | 
						|
inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
 | 
						|
  return internal::ReturnRefAction<R>(x);
 | 
						|
}
 | 
						|
 | 
						|
// Prevent using ReturnRef on reference to temporary.
 | 
						|
template <typename R, R* = nullptr>
 | 
						|
internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
 | 
						|
 | 
						|
// Creates an action that returns the reference to a copy of the
 | 
						|
// argument.  The copy is created when the action is constructed and
 | 
						|
// lives as long as the action.
 | 
						|
template <typename R>
 | 
						|
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
 | 
						|
  return internal::ReturnRefOfCopyAction<R>(x);
 | 
						|
}
 | 
						|
 | 
						|
// Modifies the parent action (a Return() action) to perform a move of the
 | 
						|
// argument instead of a copy.
 | 
						|
// Return(ByMove()) actions can only be executed once and will assert this
 | 
						|
// invariant.
 | 
						|
template <typename R>
 | 
						|
internal::ByMoveWrapper<R> ByMove(R x) {
 | 
						|
  return internal::ByMoveWrapper<R>(std::move(x));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns an element of `vals`. Calling this action will
 | 
						|
// repeatedly return the next value from `vals` until it reaches the end and
 | 
						|
// will restart from the beginning.
 | 
						|
template <typename T>
 | 
						|
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
 | 
						|
  return internal::ReturnRoundRobinAction<T>(std::move(vals));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns an element of `vals`. Calling this action will
 | 
						|
// repeatedly return the next value from `vals` until it reaches the end and
 | 
						|
// will restart from the beginning.
 | 
						|
template <typename T>
 | 
						|
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
 | 
						|
    std::initializer_list<T> vals) {
 | 
						|
  return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that does the default action for the give mock function.
 | 
						|
inline internal::DoDefaultAction DoDefault() {
 | 
						|
  return internal::DoDefaultAction();
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that sets the variable pointed by the N-th
 | 
						|
// (0-based) function argument to 'value'.
 | 
						|
template <size_t N, typename T>
 | 
						|
internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
 | 
						|
  return {std::move(value)};
 | 
						|
}
 | 
						|
 | 
						|
// The following version is DEPRECATED.
 | 
						|
template <size_t N, typename T>
 | 
						|
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
 | 
						|
  return {std::move(value)};
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that sets a pointer referent to a given value.
 | 
						|
template <typename T1, typename T2>
 | 
						|
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
 | 
						|
  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
 | 
						|
}
 | 
						|
 | 
						|
#if !GTEST_OS_WINDOWS_MOBILE
 | 
						|
 | 
						|
// Creates an action that sets errno and returns the appropriate error.
 | 
						|
template <typename T>
 | 
						|
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
 | 
						|
SetErrnoAndReturn(int errval, T result) {
 | 
						|
  return MakePolymorphicAction(
 | 
						|
      internal::SetErrnoAndReturnAction<T>(errval, result));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // !GTEST_OS_WINDOWS_MOBILE
 | 
						|
 | 
						|
// Various overloads for Invoke().
 | 
						|
 | 
						|
// Legacy function.
 | 
						|
// Actions can now be implicitly constructed from callables. No need to create
 | 
						|
// wrapper objects.
 | 
						|
// This function exists for backwards compatibility.
 | 
						|
template <typename FunctionImpl>
 | 
						|
typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
 | 
						|
  return std::forward<FunctionImpl>(function_impl);
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that invokes the given method on the given object
 | 
						|
// with the mock function's arguments.
 | 
						|
template <class Class, typename MethodPtr>
 | 
						|
internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
 | 
						|
                                                      MethodPtr method_ptr) {
 | 
						|
  return {obj_ptr, method_ptr};
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that invokes 'function_impl' with no argument.
 | 
						|
template <typename FunctionImpl>
 | 
						|
internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
 | 
						|
InvokeWithoutArgs(FunctionImpl function_impl) {
 | 
						|
  return {std::move(function_impl)};
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that invokes the given method on the given object
 | 
						|
// with no argument.
 | 
						|
template <class Class, typename MethodPtr>
 | 
						|
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
 | 
						|
    Class* obj_ptr, MethodPtr method_ptr) {
 | 
						|
  return {obj_ptr, method_ptr};
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that performs an_action and throws away its
 | 
						|
// result.  In other words, it changes the return type of an_action to
 | 
						|
// void.  an_action MUST NOT return void, or the code won't compile.
 | 
						|
template <typename A>
 | 
						|
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
 | 
						|
  return internal::IgnoreResultAction<A>(an_action);
 | 
						|
}
 | 
						|
 | 
						|
// Creates a reference wrapper for the given L-value.  If necessary,
 | 
						|
// you can explicitly specify the type of the reference.  For example,
 | 
						|
// suppose 'derived' is an object of type Derived, ByRef(derived)
 | 
						|
// would wrap a Derived&.  If you want to wrap a const Base& instead,
 | 
						|
// where Base is a base class of Derived, just write:
 | 
						|
//
 | 
						|
//   ByRef<const Base>(derived)
 | 
						|
//
 | 
						|
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
 | 
						|
// However, it may still be used for consistency with ByMove().
 | 
						|
template <typename T>
 | 
						|
inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
 | 
						|
  return ::std::reference_wrapper<T>(l_value);
 | 
						|
}
 | 
						|
 | 
						|
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
 | 
						|
// instance of type T, constructed on the heap with constructor arguments
 | 
						|
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
 | 
						|
template <typename T, typename... Params>
 | 
						|
internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
 | 
						|
    Params&&... params) {
 | 
						|
  return {std::forward_as_tuple(std::forward<Params>(params)...)};
 | 
						|
}
 | 
						|
 | 
						|
// Action ReturnArg<k>() returns the k-th argument of the mock function.
 | 
						|
template <size_t k>
 | 
						|
internal::ReturnArgAction<k> ReturnArg() {
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
 | 
						|
// mock function to *pointer.
 | 
						|
template <size_t k, typename Ptr>
 | 
						|
internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
 | 
						|
  return {pointer};
 | 
						|
}
 | 
						|
 | 
						|
// Action SaveArgPointee<k>(pointer) saves the value pointed to
 | 
						|
// by the k-th (0-based) argument of the mock function to *pointer.
 | 
						|
template <size_t k, typename Ptr>
 | 
						|
internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
 | 
						|
  return {pointer};
 | 
						|
}
 | 
						|
 | 
						|
// Action SetArgReferee<k>(value) assigns 'value' to the variable
 | 
						|
// referenced by the k-th (0-based) argument of the mock function.
 | 
						|
template <size_t k, typename T>
 | 
						|
internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
 | 
						|
    T&& value) {
 | 
						|
  return {std::forward<T>(value)};
 | 
						|
}
 | 
						|
 | 
						|
// Action SetArrayArgument<k>(first, last) copies the elements in
 | 
						|
// source range [first, last) to the array pointed to by the k-th
 | 
						|
// (0-based) argument, which can be either a pointer or an
 | 
						|
// iterator. The action does not take ownership of the elements in the
 | 
						|
// source range.
 | 
						|
template <size_t k, typename I1, typename I2>
 | 
						|
internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
 | 
						|
                                                             I2 last) {
 | 
						|
  return {first, last};
 | 
						|
}
 | 
						|
 | 
						|
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
 | 
						|
// function.
 | 
						|
template <size_t k>
 | 
						|
internal::DeleteArgAction<k> DeleteArg() {
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
// This action returns the value pointed to by 'pointer'.
 | 
						|
template <typename Ptr>
 | 
						|
internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
 | 
						|
  return {pointer};
 | 
						|
}
 | 
						|
 | 
						|
// Action Throw(exception) can be used in a mock function of any type
 | 
						|
// to throw the given exception.  Any copyable value can be thrown.
 | 
						|
#if GTEST_HAS_EXCEPTIONS
 | 
						|
template <typename T>
 | 
						|
internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
 | 
						|
  return {std::forward<T>(exception)};
 | 
						|
}
 | 
						|
#endif  // GTEST_HAS_EXCEPTIONS
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
 | 
						|
// defines an action that can be used in a mock function.  Typically,
 | 
						|
// these actions only care about a subset of the arguments of the mock
 | 
						|
// function.  For example, if such an action only uses the second
 | 
						|
// argument, it can be used in any mock function that takes >= 2
 | 
						|
// arguments where the type of the second argument is compatible.
 | 
						|
//
 | 
						|
// Therefore, the action implementation must be prepared to take more
 | 
						|
// arguments than it needs.  The ExcessiveArg type is used to
 | 
						|
// represent those excessive arguments.  In order to keep the compiler
 | 
						|
// error messages tractable, we define it in the testing namespace
 | 
						|
// instead of testing::internal.  However, this is an INTERNAL TYPE
 | 
						|
// and subject to change without notice, so a user MUST NOT USE THIS
 | 
						|
// TYPE DIRECTLY.
 | 
						|
struct ExcessiveArg {};
 | 
						|
 | 
						|
// A helper class needed for implementing the ACTION* macros.
 | 
						|
template <typename Result, class Impl>
 | 
						|
class ActionHelper {
 | 
						|
 public:
 | 
						|
  template <typename... Ts>
 | 
						|
  static Result Perform(Impl* impl, const std::tuple<Ts...>& args) {
 | 
						|
    static constexpr size_t kMaxArgs = sizeof...(Ts) <= 10 ? sizeof...(Ts) : 10;
 | 
						|
    return Apply(impl, args, MakeIndexSequence<kMaxArgs>{},
 | 
						|
                 MakeIndexSequence<10 - kMaxArgs>{});
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename... Ts, std::size_t... tuple_ids, std::size_t... rest_ids>
 | 
						|
  static Result Apply(Impl* impl, const std::tuple<Ts...>& args,
 | 
						|
                      IndexSequence<tuple_ids...>, IndexSequence<rest_ids...>) {
 | 
						|
    return impl->template gmock_PerformImpl<
 | 
						|
        typename std::tuple_element<tuple_ids, std::tuple<Ts...>>::type...>(
 | 
						|
        args, std::get<tuple_ids>(args)...,
 | 
						|
        ((void)rest_ids, ExcessiveArg())...);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// A helper base class needed for implementing the ACTION* macros.
 | 
						|
// Implements constructor and conversion operator for Action.
 | 
						|
//
 | 
						|
// Template specialization for parameterless Action.
 | 
						|
template <typename Derived>
 | 
						|
class ActionImpl {
 | 
						|
 public:
 | 
						|
  ActionImpl() = default;
 | 
						|
 | 
						|
  template <typename F>
 | 
						|
  operator ::testing::Action<F>() const {  // NOLINT(runtime/explicit)
 | 
						|
    return ::testing::Action<F>(new typename Derived::template gmock_Impl<F>());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Template specialization for parameterized Action.
 | 
						|
template <template <typename...> class Derived, typename... Ts>
 | 
						|
class ActionImpl<Derived<Ts...>> {
 | 
						|
 public:
 | 
						|
  explicit ActionImpl(Ts... params) : params_(std::forward<Ts>(params)...) {}
 | 
						|
 | 
						|
  template <typename F>
 | 
						|
  operator ::testing::Action<F>() const {  // NOLINT(runtime/explicit)
 | 
						|
    return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename F, std::size_t... tuple_ids>
 | 
						|
  ::testing::Action<F> Apply(IndexSequence<tuple_ids...>) const {
 | 
						|
    return ::testing::Action<F>(new
 | 
						|
                                typename Derived<Ts...>::template gmock_Impl<F>(
 | 
						|
                                    std::get<tuple_ids>(params_)...));
 | 
						|
  }
 | 
						|
 | 
						|
  std::tuple<Ts...> params_;
 | 
						|
};
 | 
						|
 | 
						|
// internal::InvokeArgument - a helper for InvokeArgument action.
 | 
						|
// The basic overloads are provided here for generic functors.
 | 
						|
// Overloads for other custom-callables are provided in the
 | 
						|
// internal/custom/gmock-generated-actions.h header.
 | 
						|
template <typename F, typename... Args>
 | 
						|
auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) {
 | 
						|
  return f(args...);
 | 
						|
}
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
 | 
						|
  , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
 | 
						|
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_                 \
 | 
						|
  const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
 | 
						|
      GMOCK_INTERNAL_ARG_UNUSED, , 10)
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
 | 
						|
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
 | 
						|
  const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
 | 
						|
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
 | 
						|
#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
 | 
						|
#define GMOCK_ACTION_TYPE_PARAMS_(params) \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
 | 
						|
  , param##_type gmock_p##i
 | 
						|
#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
 | 
						|
  , std::forward<param##_type>(gmock_p##i)
 | 
						|
#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
 | 
						|
  , param(::std::forward<param##_type>(gmock_p##i))
 | 
						|
#define GMOCK_ACTION_INIT_PARAMS_(params) \
 | 
						|
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
 | 
						|
#define GMOCK_ACTION_FIELD_PARAMS_(params) \
 | 
						|
  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
 | 
						|
 | 
						|
#define GMOCK_INTERNAL_ACTION(name, full_name, params)                        \
 | 
						|
  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
 | 
						|
  class full_name : public ::testing::internal::ActionImpl<                   \
 | 
						|
                        full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>> {       \
 | 
						|
    using base_type = ::testing::internal::ActionImpl<full_name>;             \
 | 
						|
                                                                              \
 | 
						|
   public:                                                                    \
 | 
						|
    using base_type::base_type;                                               \
 | 
						|
    template <typename F>                                                     \
 | 
						|
    class gmock_Impl : public ::testing::ActionInterface<F> {                 \
 | 
						|
     public:                                                                  \
 | 
						|
      typedef F function_type;                                                \
 | 
						|
      typedef typename ::testing::internal::Function<F>::Result return_type;  \
 | 
						|
      typedef                                                                 \
 | 
						|
          typename ::testing::internal::Function<F>::ArgumentTuple args_type; \
 | 
						|
      explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))           \
 | 
						|
          : GMOCK_ACTION_INIT_PARAMS_(params) {}                              \
 | 
						|
      return_type Perform(const args_type& args) override {                   \
 | 
						|
        return ::testing::internal::ActionHelper<return_type,                 \
 | 
						|
                                                 gmock_Impl>::Perform(this,   \
 | 
						|
                                                                      args);  \
 | 
						|
      }                                                                       \
 | 
						|
      template <GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                            \
 | 
						|
      return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
 | 
						|
      GMOCK_ACTION_FIELD_PARAMS_(params)                                      \
 | 
						|
    };                                                                        \
 | 
						|
  };                                                                          \
 | 
						|
  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
 | 
						|
  inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                   \
 | 
						|
      GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                             \
 | 
						|
    return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                      \
 | 
						|
        GMOCK_ACTION_GVALUE_PARAMS_(params));                                 \
 | 
						|
  }                                                                           \
 | 
						|
  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
 | 
						|
  template <typename F>                                                       \
 | 
						|
  template <GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
 | 
						|
  typename ::testing::internal::Function<F>::Result                           \
 | 
						|
      full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl<               \
 | 
						|
          F>::gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_)     \
 | 
						|
          const
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
 | 
						|
#define ACTION(name)                                                          \
 | 
						|
  class name##Action : public ::testing::internal::ActionImpl<name##Action> { \
 | 
						|
    using base_type = ::testing::internal::ActionImpl<name##Action>;          \
 | 
						|
                                                                              \
 | 
						|
   public:                                                                    \
 | 
						|
    using base_type::base_type;                                               \
 | 
						|
    name##Action() = default;                                                 \
 | 
						|
    /* Work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134 */      \
 | 
						|
    name##Action(const name##Action&) { }                                     \
 | 
						|
    template <typename F>                                                     \
 | 
						|
    class gmock_Impl : public ::testing::ActionInterface<F> {                 \
 | 
						|
     public:                                                                  \
 | 
						|
      typedef F function_type;                                                \
 | 
						|
      typedef typename ::testing::internal::Function<F>::Result return_type;  \
 | 
						|
      typedef                                                                 \
 | 
						|
          typename ::testing::internal::Function<F>::ArgumentTuple args_type; \
 | 
						|
      gmock_Impl() {}                                                         \
 | 
						|
      return_type Perform(const args_type& args) override {                   \
 | 
						|
        return ::testing::internal::ActionHelper<return_type,                 \
 | 
						|
                                                 gmock_Impl>::Perform(this,   \
 | 
						|
                                                                      args);  \
 | 
						|
      }                                                                       \
 | 
						|
      template <GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                            \
 | 
						|
      return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
 | 
						|
    };                                                                        \
 | 
						|
  };                                                                          \
 | 
						|
  inline name##Action name() GTEST_MUST_USE_RESULT_;                          \
 | 
						|
  inline name##Action name() { return name##Action(); }                       \
 | 
						|
  template <typename F>                                                       \
 | 
						|
  template <GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
 | 
						|
  typename ::testing::internal::Function<F>::Result                           \
 | 
						|
      name##Action::gmock_Impl<F>::gmock_PerformImpl(                         \
 | 
						|
          GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
 | 
						|
 | 
						|
#define ACTION_P(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P2(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P3(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P4(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P5(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P6(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P7(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P8(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P9(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
 | 
						|
 | 
						|
#define ACTION_P10(name, ...) \
 | 
						|
  GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
 | 
						|
 | 
						|
}  // namespace testing
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
# pragma warning(pop)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 |