932 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			932 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2007, Google Inc.
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//     * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//     * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//     * Neither the name of Google Inc. nor the names of its
 | 
						|
// contributors may be used to endorse or promote products derived from
 | 
						|
// this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
// Author: wan@google.com (Zhanyong Wan)
 | 
						|
 | 
						|
// Google Mock - a framework for writing C++ mock classes.
 | 
						|
//
 | 
						|
// This file implements some commonly used actions.
 | 
						|
 | 
						|
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 | 
						|
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <string>
 | 
						|
 | 
						|
#ifndef _WIN32_WCE
 | 
						|
#include <errno.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <gmock/internal/gmock-internal-utils.h>
 | 
						|
#include <gmock/internal/gmock-port.h>
 | 
						|
 | 
						|
namespace testing {
 | 
						|
 | 
						|
// To implement an action Foo, define:
 | 
						|
//   1. a class FooAction that implements the ActionInterface interface, and
 | 
						|
//   2. a factory function that creates an Action object from a
 | 
						|
//      const FooAction*.
 | 
						|
//
 | 
						|
// The two-level delegation design follows that of Matcher, providing
 | 
						|
// consistency for extension developers.  It also eases ownership
 | 
						|
// management as Action objects can now be copied like plain values.
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
template <typename F>
 | 
						|
class MonomorphicDoDefaultActionImpl;
 | 
						|
 | 
						|
template <typename F1, typename F2>
 | 
						|
class ActionAdaptor;
 | 
						|
 | 
						|
// BuiltInDefaultValue<T>::Get() returns the "built-in" default
 | 
						|
// value for type T, which is NULL when T is a pointer type, 0 when T
 | 
						|
// is a numeric type, false when T is bool, or "" when T is string or
 | 
						|
// std::string.  For any other type T, this value is undefined and the
 | 
						|
// function will abort the process.
 | 
						|
template <typename T>
 | 
						|
class BuiltInDefaultValue {
 | 
						|
 public:
 | 
						|
  // This function returns true iff type T has a built-in default value.
 | 
						|
  static bool Exists() { return false; }
 | 
						|
  static T Get() {
 | 
						|
    Assert(false, __FILE__, __LINE__,
 | 
						|
           "Default action undefined for the function return type.");
 | 
						|
    return internal::Invalid<T>();
 | 
						|
    // The above statement will never be reached, but is required in
 | 
						|
    // order for this function to compile.
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// This partial specialization says that we use the same built-in
 | 
						|
// default value for T and const T.
 | 
						|
template <typename T>
 | 
						|
class BuiltInDefaultValue<const T> {
 | 
						|
 public:
 | 
						|
  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
 | 
						|
  static T Get() { return BuiltInDefaultValue<T>::Get(); }
 | 
						|
};
 | 
						|
 | 
						|
// This partial specialization defines the default values for pointer
 | 
						|
// types.
 | 
						|
template <typename T>
 | 
						|
class BuiltInDefaultValue<T*> {
 | 
						|
 public:
 | 
						|
  static bool Exists() { return true; }
 | 
						|
  static T* Get() { return NULL; }
 | 
						|
};
 | 
						|
 | 
						|
// The following specializations define the default values for
 | 
						|
// specific types we care about.
 | 
						|
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
 | 
						|
  template <> \
 | 
						|
  class BuiltInDefaultValue<type> { \
 | 
						|
   public: \
 | 
						|
    static bool Exists() { return true; } \
 | 
						|
    static type Get() { return value; } \
 | 
						|
  }
 | 
						|
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
 | 
						|
#if GTEST_HAS_GLOBAL_STRING
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
 | 
						|
#endif  // GTEST_HAS_GLOBAL_STRING
 | 
						|
#if GTEST_HAS_STD_STRING
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
 | 
						|
#endif  // GTEST_HAS_STD_STRING
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
 | 
						|
 | 
						|
// signed wchar_t and unsigned wchar_t are NOT in the C++ standard.
 | 
						|
// Using them is a bad practice and not portable.  So don't use them.
 | 
						|
//
 | 
						|
// Still, Google Mock is designed to work even if the user uses signed
 | 
						|
// wchar_t or unsigned wchar_t (obviously, assuming the compiler
 | 
						|
// supports them).
 | 
						|
//
 | 
						|
// To gcc,
 | 
						|
//
 | 
						|
//   wchar_t == signed wchar_t != unsigned wchar_t == unsigned int
 | 
						|
//
 | 
						|
// MSVC does not recognize signed wchar_t or unsigned wchar_t.  It
 | 
						|
// treats wchar_t as a native type usually, but treats it as the same
 | 
						|
// as unsigned short when the compiler option /Zc:wchar_t- is
 | 
						|
// specified.
 | 
						|
//
 | 
						|
// Therefore we provide a default action for wchar_t when compiled
 | 
						|
// with gcc or _NATIVE_WCHAR_T_DEFINED is defined.
 | 
						|
//
 | 
						|
// There's no need for a default action for signed wchar_t, as that
 | 
						|
// type is the same as wchar_t for gcc, and invalid for MSVC.
 | 
						|
//
 | 
						|
// There's also no need for a default action for unsigned wchar_t, as
 | 
						|
// that type is the same as unsigned int for gcc, and invalid for
 | 
						|
// MSVC.
 | 
						|
#if defined(__GNUC__) || defined(_NATIVE_WCHAR_T_DEFINED)
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
 | 
						|
#endif
 | 
						|
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
 | 
						|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
 | 
						|
 | 
						|
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
 | 
						|
// When an unexpected function call is encountered, Google Mock will
 | 
						|
// let it return a default value if the user has specified one for its
 | 
						|
// return type, or if the return type has a built-in default value;
 | 
						|
// otherwise Google Mock won't know what value to return and will have
 | 
						|
// to abort the process.
 | 
						|
//
 | 
						|
// The DefaultValue<T> class allows a user to specify the
 | 
						|
// default value for a type T that is both copyable and publicly
 | 
						|
// destructible (i.e. anything that can be used as a function return
 | 
						|
// type).  The usage is:
 | 
						|
//
 | 
						|
//   // Sets the default value for type T to be foo.
 | 
						|
//   DefaultValue<T>::Set(foo);
 | 
						|
template <typename T>
 | 
						|
class DefaultValue {
 | 
						|
 public:
 | 
						|
  // Sets the default value for type T; requires T to be
 | 
						|
  // copy-constructable and have a public destructor.
 | 
						|
  static void Set(T x) {
 | 
						|
    delete value_;
 | 
						|
    value_ = new T(x);
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsets the default value for type T.
 | 
						|
  static void Clear() {
 | 
						|
    delete value_;
 | 
						|
    value_ = NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns true iff the user has set the default value for type T.
 | 
						|
  static bool IsSet() { return value_ != NULL; }
 | 
						|
 | 
						|
  // Returns true if T has a default return value set by the user or there
 | 
						|
  // exists a built-in default value.
 | 
						|
  static bool Exists() {
 | 
						|
    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the default value for type T if the user has set one;
 | 
						|
  // otherwise returns the built-in default value if there is one;
 | 
						|
  // otherwise aborts the process.
 | 
						|
  static T Get() {
 | 
						|
    return value_ == NULL ?
 | 
						|
        internal::BuiltInDefaultValue<T>::Get() : *value_;
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  static const T* value_;
 | 
						|
};
 | 
						|
 | 
						|
// This partial specialization allows a user to set default values for
 | 
						|
// reference types.
 | 
						|
template <typename T>
 | 
						|
class DefaultValue<T&> {
 | 
						|
 public:
 | 
						|
  // Sets the default value for type T&.
 | 
						|
  static void Set(T& x) {  // NOLINT
 | 
						|
    address_ = &x;
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsets the default value for type T&.
 | 
						|
  static void Clear() {
 | 
						|
    address_ = NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns true iff the user has set the default value for type T&.
 | 
						|
  static bool IsSet() { return address_ != NULL; }
 | 
						|
 | 
						|
  // Returns true if T has a default return value set by the user or there
 | 
						|
  // exists a built-in default value.
 | 
						|
  static bool Exists() {
 | 
						|
    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the default value for type T& if the user has set one;
 | 
						|
  // otherwise returns the built-in default value if there is one;
 | 
						|
  // otherwise aborts the process.
 | 
						|
  static T& Get() {
 | 
						|
    return address_ == NULL ?
 | 
						|
        internal::BuiltInDefaultValue<T&>::Get() : *address_;
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  static T* address_;
 | 
						|
};
 | 
						|
 | 
						|
// This specialization allows DefaultValue<void>::Get() to
 | 
						|
// compile.
 | 
						|
template <>
 | 
						|
class DefaultValue<void> {
 | 
						|
 public:
 | 
						|
  static bool Exists() { return true; }
 | 
						|
  static void Get() {}
 | 
						|
};
 | 
						|
 | 
						|
// Points to the user-set default value for type T.
 | 
						|
template <typename T>
 | 
						|
const T* DefaultValue<T>::value_ = NULL;
 | 
						|
 | 
						|
// Points to the user-set default value for type T&.
 | 
						|
template <typename T>
 | 
						|
T* DefaultValue<T&>::address_ = NULL;
 | 
						|
 | 
						|
// Implement this interface to define an action for function type F.
 | 
						|
template <typename F>
 | 
						|
class ActionInterface {
 | 
						|
 public:
 | 
						|
  typedef typename internal::Function<F>::Result Result;
 | 
						|
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
  ActionInterface() : is_do_default_(false) {}
 | 
						|
 | 
						|
  virtual ~ActionInterface() {}
 | 
						|
 | 
						|
  // Performs the action.  This method is not const, as in general an
 | 
						|
  // action can have side effects and be stateful.  For example, a
 | 
						|
  // get-the-next-element-from-the-collection action will need to
 | 
						|
  // remember the current element.
 | 
						|
  virtual Result Perform(const ArgumentTuple& args) = 0;
 | 
						|
 | 
						|
  // Returns true iff this is the DoDefault() action.
 | 
						|
  bool IsDoDefault() const { return is_do_default_; }
 | 
						|
 private:
 | 
						|
  template <typename Function>
 | 
						|
  friend class internal::MonomorphicDoDefaultActionImpl;
 | 
						|
 | 
						|
  // This private constructor is reserved for implementing
 | 
						|
  // DoDefault(), the default action for a given mock function.
 | 
						|
  explicit ActionInterface(bool is_do_default)
 | 
						|
      : is_do_default_(is_do_default) {}
 | 
						|
 | 
						|
  // True iff this action is DoDefault().
 | 
						|
  const bool is_do_default_;
 | 
						|
};
 | 
						|
 | 
						|
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
 | 
						|
// object that represents an action to be taken when a mock function
 | 
						|
// of type F is called.  The implementation of Action<T> is just a
 | 
						|
// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
 | 
						|
// Don't inherit from Action!
 | 
						|
//
 | 
						|
// You can view an object implementing ActionInterface<F> as a
 | 
						|
// concrete action (including its current state), and an Action<F>
 | 
						|
// object as a handle to it.
 | 
						|
template <typename F>
 | 
						|
class Action {
 | 
						|
 public:
 | 
						|
  typedef typename internal::Function<F>::Result Result;
 | 
						|
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
  // Constructs a null Action.  Needed for storing Action objects in
 | 
						|
  // STL containers.
 | 
						|
  Action() : impl_(NULL) {}
 | 
						|
 | 
						|
  // Constructs an Action from its implementation.
 | 
						|
  explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
 | 
						|
 | 
						|
  // Copy constructor.
 | 
						|
  Action(const Action& action) : impl_(action.impl_) {}
 | 
						|
 | 
						|
  // This constructor allows us to turn an Action<Func> object into an
 | 
						|
  // Action<F>, as long as F's arguments can be implicitly converted
 | 
						|
  // to Func's and Func's return type cann be implicitly converted to
 | 
						|
  // F's.
 | 
						|
  template <typename Func>
 | 
						|
  explicit Action(const Action<Func>& action);
 | 
						|
 | 
						|
  // Returns true iff this is the DoDefault() action.
 | 
						|
  bool IsDoDefault() const { return impl_->IsDoDefault(); }
 | 
						|
 | 
						|
  // Performs the action.  Note that this method is const even though
 | 
						|
  // the corresponding method in ActionInterface is not.  The reason
 | 
						|
  // is that a const Action<F> means that it cannot be re-bound to
 | 
						|
  // another concrete action, not that the concrete action it binds to
 | 
						|
  // cannot change state.  (Think of the difference between a const
 | 
						|
  // pointer and a pointer to const.)
 | 
						|
  Result Perform(const ArgumentTuple& args) const {
 | 
						|
    return impl_->Perform(args);
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  template <typename F1, typename F2>
 | 
						|
  friend class internal::ActionAdaptor;
 | 
						|
 | 
						|
  internal::linked_ptr<ActionInterface<F> > impl_;
 | 
						|
};
 | 
						|
 | 
						|
// The PolymorphicAction class template makes it easy to implement a
 | 
						|
// polymorphic action (i.e. an action that can be used in mock
 | 
						|
// functions of than one type, e.g. Return()).
 | 
						|
//
 | 
						|
// To define a polymorphic action, a user first provides a COPYABLE
 | 
						|
// implementation class that has a Perform() method template:
 | 
						|
//
 | 
						|
//   class FooAction {
 | 
						|
//    public:
 | 
						|
//     template <typename Result, typename ArgumentTuple>
 | 
						|
//     Result Perform(const ArgumentTuple& args) const {
 | 
						|
//       // Processes the arguments and returns a result, using
 | 
						|
//       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
 | 
						|
//     }
 | 
						|
//     ...
 | 
						|
//   };
 | 
						|
//
 | 
						|
// Then the user creates the polymorphic action using
 | 
						|
// MakePolymorphicAction(object) where object has type FooAction.  See
 | 
						|
// the definition of Return(void) and SetArgumentPointee<N>(value) for
 | 
						|
// complete examples.
 | 
						|
template <typename Impl>
 | 
						|
class PolymorphicAction {
 | 
						|
 public:
 | 
						|
  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
 | 
						|
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    return Action<F>(new MonomorphicImpl<F>(impl_));
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  template <typename F>
 | 
						|
  class MonomorphicImpl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename internal::Function<F>::Result Result;
 | 
						|
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
 | 
						|
 | 
						|
    virtual Result Perform(const ArgumentTuple& args) {
 | 
						|
      return impl_.template Perform<Result>(args);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    Impl impl_;
 | 
						|
  };
 | 
						|
 | 
						|
  Impl impl_;
 | 
						|
};
 | 
						|
 | 
						|
// Creates an Action from its implementation and returns it.  The
 | 
						|
// created Action object owns the implementation.
 | 
						|
template <typename F>
 | 
						|
Action<F> MakeAction(ActionInterface<F>* impl) {
 | 
						|
  return Action<F>(impl);
 | 
						|
}
 | 
						|
 | 
						|
// Creates a polymorphic action from its implementation.  This is
 | 
						|
// easier to use than the PolymorphicAction<Impl> constructor as it
 | 
						|
// doesn't require you to explicitly write the template argument, e.g.
 | 
						|
//
 | 
						|
//   MakePolymorphicAction(foo);
 | 
						|
// vs
 | 
						|
//   PolymorphicAction<TypeOfFoo>(foo);
 | 
						|
template <typename Impl>
 | 
						|
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
 | 
						|
  return PolymorphicAction<Impl>(impl);
 | 
						|
}
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
 | 
						|
// and F1 are compatible.
 | 
						|
template <typename F1, typename F2>
 | 
						|
class ActionAdaptor : public ActionInterface<F1> {
 | 
						|
 public:
 | 
						|
  typedef typename internal::Function<F1>::Result Result;
 | 
						|
  typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
  explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
 | 
						|
 | 
						|
  virtual Result Perform(const ArgumentTuple& args) {
 | 
						|
    return impl_->Perform(args);
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  const internal::linked_ptr<ActionInterface<F2> > impl_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic Return(x) action, which can be used in
 | 
						|
// any function that returns the type of x, regardless of the argument
 | 
						|
// types.
 | 
						|
template <typename R>
 | 
						|
class ReturnAction {
 | 
						|
 public:
 | 
						|
  // Constructs a ReturnAction object from the value to be returned.
 | 
						|
  // 'value' is passed by value instead of by const reference in order
 | 
						|
  // to allow Return("string literal") to compile.
 | 
						|
  explicit ReturnAction(R value) : value_(value) {}
 | 
						|
 | 
						|
  // This template type conversion operator allows Return(x) to be
 | 
						|
  // used in ANY function that returns x's type.
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    // Assert statement belongs here because this is the best place to verify
 | 
						|
    // conditions on F. It produces the clearest error messages
 | 
						|
    // in most compilers.
 | 
						|
    // Impl really belongs in this scope as a local class but can't
 | 
						|
    // because MSVC produces duplicate symbols in different translation units
 | 
						|
    // in this case. Until MS fixes that bug we put Impl into the class scope
 | 
						|
    // and put the typedef both here (for use in assert statement) and
 | 
						|
    // in the Impl class. But both definitions must be the same.
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    GMOCK_COMPILE_ASSERT_(
 | 
						|
        !internal::is_reference<Result>::value,
 | 
						|
        use_ReturnRef_instead_of_Return_to_return_a_reference);
 | 
						|
    return Action<F>(new Impl<F>(value_));
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  // Implements the Return(x) action for a particular function type F.
 | 
						|
  template <typename F>
 | 
						|
  class Impl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit Impl(R value) : value_(value) {}
 | 
						|
 | 
						|
    virtual Result Perform(const ArgumentTuple&) { return value_; }
 | 
						|
 | 
						|
   private:
 | 
						|
    R value_;
 | 
						|
  };
 | 
						|
 | 
						|
  R value_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the ReturnNull() action.
 | 
						|
class ReturnNullAction {
 | 
						|
 public:
 | 
						|
  // Allows ReturnNull() to be used in any pointer-returning function.
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  static Result Perform(const ArgumentTuple&) {
 | 
						|
    GMOCK_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
 | 
						|
                          ReturnNull_can_be_used_to_return_a_pointer_only);
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the Return() action.
 | 
						|
class ReturnVoidAction {
 | 
						|
 public:
 | 
						|
  // Allows Return() to be used in any void-returning function.
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  static void Perform(const ArgumentTuple&) {
 | 
						|
    CompileAssertTypesEqual<void, Result>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic ReturnRef(x) action, which can be used
 | 
						|
// in any function that returns a reference to the type of x,
 | 
						|
// regardless of the argument types.
 | 
						|
template <typename T>
 | 
						|
class ReturnRefAction {
 | 
						|
 public:
 | 
						|
  // Constructs a ReturnRefAction object from the reference to be returned.
 | 
						|
  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
 | 
						|
 | 
						|
  // This template type conversion operator allows ReturnRef(x) to be
 | 
						|
  // used in ANY function that returns a reference to x's type.
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    // Asserts that the function return type is a reference.  This
 | 
						|
    // catches the user error of using ReturnRef(x) when Return(x)
 | 
						|
    // should be used, and generates some helpful error message.
 | 
						|
    GMOCK_COMPILE_ASSERT_(internal::is_reference<Result>::value,
 | 
						|
                          use_Return_instead_of_ReturnRef_to_return_a_value);
 | 
						|
    return Action<F>(new Impl<F>(ref_));
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  // Implements the ReturnRef(x) action for a particular function type F.
 | 
						|
  template <typename F>
 | 
						|
  class Impl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename Function<F>::Result Result;
 | 
						|
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
 | 
						|
 | 
						|
    virtual Result Perform(const ArgumentTuple&) {
 | 
						|
      return ref_;
 | 
						|
    }
 | 
						|
   private:
 | 
						|
    T& ref_;
 | 
						|
  };
 | 
						|
 | 
						|
  T& ref_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the DoDefault() action for a particular function type F.
 | 
						|
template <typename F>
 | 
						|
class MonomorphicDoDefaultActionImpl : public ActionInterface<F> {
 | 
						|
 public:
 | 
						|
  typedef typename Function<F>::Result Result;
 | 
						|
  typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
  MonomorphicDoDefaultActionImpl() : ActionInterface<F>(true) {}
 | 
						|
 | 
						|
  // For technical reasons, DoDefault() cannot be used inside a
 | 
						|
  // composite action (e.g. DoAll(...)).  It can only be used at the
 | 
						|
  // top level in an EXPECT_CALL().  If this function is called, the
 | 
						|
  // user must be using DoDefault() inside a composite action, and we
 | 
						|
  // have to generate a run-time error.
 | 
						|
  virtual Result Perform(const ArgumentTuple&) {
 | 
						|
    Assert(false, __FILE__, __LINE__,
 | 
						|
           "You are using DoDefault() inside a composite action like "
 | 
						|
           "DoAll() or WithArgs().  This is not supported for technical "
 | 
						|
           "reasons.  Please instead spell out the default action, or "
 | 
						|
           "assign the default action to an Action variable and use "
 | 
						|
           "the variable in various places.");
 | 
						|
    return internal::Invalid<Result>();
 | 
						|
    // The above statement will never be reached, but is required in
 | 
						|
    // order for this function to compile.
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the polymorphic DoDefault() action.
 | 
						|
class DoDefaultAction {
 | 
						|
 public:
 | 
						|
  // This template type conversion operator allows DoDefault() to be
 | 
						|
  // used in any function.
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    return Action<F>(new MonomorphicDoDefaultActionImpl<F>);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Implements the Assign action to set a given pointer referent to a
 | 
						|
// particular value.
 | 
						|
template <typename T1, typename T2>
 | 
						|
class AssignAction {
 | 
						|
 public:
 | 
						|
  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
 | 
						|
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  void Perform(const ArgumentTuple& /* args */) const {
 | 
						|
    *ptr_ = value_;
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  T1* const ptr_;
 | 
						|
  const T2 value_;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _WIN32_WCE
 | 
						|
 | 
						|
// Implements the SetErrnoAndReturn action to simulate return from
 | 
						|
// various system calls and libc functions.
 | 
						|
template <typename T>
 | 
						|
class SetErrnoAndReturnAction {
 | 
						|
 public:
 | 
						|
  SetErrnoAndReturnAction(int errno_value, T result)
 | 
						|
      : errno_(errno_value),
 | 
						|
        result_(result) {}
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  Result Perform(const ArgumentTuple& /* args */) const {
 | 
						|
    errno = errno_;
 | 
						|
    return result_;
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  const int errno_;
 | 
						|
  const T result_;
 | 
						|
};
 | 
						|
 | 
						|
#endif  // _WIN32_WCE
 | 
						|
 | 
						|
// Implements the SetArgumentPointee<N>(x) action for any function
 | 
						|
// whose N-th argument (0-based) is a pointer to x's type.  The
 | 
						|
// template parameter kIsProto is true iff type A is ProtocolMessage,
 | 
						|
// proto2::Message, or a sub-class of those.
 | 
						|
template <size_t N, typename A, bool kIsProto>
 | 
						|
class SetArgumentPointeeAction {
 | 
						|
 public:
 | 
						|
  // Constructs an action that sets the variable pointed to by the
 | 
						|
  // N-th function argument to 'value'.
 | 
						|
  explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
 | 
						|
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  void Perform(const ArgumentTuple& args) const {
 | 
						|
    CompileAssertTypesEqual<void, Result>();
 | 
						|
    *::std::tr1::get<N>(args) = value_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  const A value_;
 | 
						|
};
 | 
						|
 | 
						|
template <size_t N, typename Proto>
 | 
						|
class SetArgumentPointeeAction<N, Proto, true> {
 | 
						|
 public:
 | 
						|
  // Constructs an action that sets the variable pointed to by the
 | 
						|
  // N-th function argument to 'proto'.  Both ProtocolMessage and
 | 
						|
  // proto2::Message have the CopyFrom() method, so the same
 | 
						|
  // implementation works for both.
 | 
						|
  explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
 | 
						|
    proto_->CopyFrom(proto);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  void Perform(const ArgumentTuple& args) const {
 | 
						|
    CompileAssertTypesEqual<void, Result>();
 | 
						|
    ::std::tr1::get<N>(args)->CopyFrom(*proto_);
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  const internal::linked_ptr<Proto> proto_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the SetArrayArgument<N>(first, last) action for any function
 | 
						|
// whose N-th argument (0-based) is a pointer or iterator to a type that can be
 | 
						|
// implicitly converted from *first.
 | 
						|
template <size_t N, typename InputIterator>
 | 
						|
class SetArrayArgumentAction {
 | 
						|
 public:
 | 
						|
  // Constructs an action that sets the variable pointed to by the
 | 
						|
  // N-th function argument to 'value'.
 | 
						|
  explicit SetArrayArgumentAction(InputIterator first, InputIterator last)
 | 
						|
      : first_(first), last_(last) {
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  void Perform(const ArgumentTuple& args) const {
 | 
						|
    CompileAssertTypesEqual<void, Result>();
 | 
						|
 | 
						|
    // Microsoft compiler deprecates ::std::copy, so we want to suppress warning
 | 
						|
    // 4996 (Function call with parameters that may be unsafe) there.
 | 
						|
#if GTEST_OS_WINDOWS
 | 
						|
#pragma warning(push)          // Saves the current warning state.
 | 
						|
#pragma warning(disable:4996)  // Temporarily disables warning 4996.
 | 
						|
#endif  // GTEST_OS_WINDOWS
 | 
						|
    ::std::copy(first_, last_, ::std::tr1::get<N>(args));
 | 
						|
#if GTEST_OS_WINDOWS
 | 
						|
#pragma warning(pop)           // Restores the warning state.
 | 
						|
#endif  // GTEST_OS_WINDOWS
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  const InputIterator first_;
 | 
						|
  const InputIterator last_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the InvokeWithoutArgs(f) action.  The template argument
 | 
						|
// FunctionImpl is the implementation type of f, which can be either a
 | 
						|
// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
 | 
						|
// Action<F> as long as f's type is compatible with F (i.e. f can be
 | 
						|
// assigned to a tr1::function<F>).
 | 
						|
template <typename FunctionImpl>
 | 
						|
class InvokeWithoutArgsAction {
 | 
						|
 public:
 | 
						|
  // The c'tor makes a copy of function_impl (either a function
 | 
						|
  // pointer or a functor).
 | 
						|
  explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
 | 
						|
      : function_impl_(function_impl) {}
 | 
						|
 | 
						|
  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
 | 
						|
  // compatible with f.
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  Result Perform(const ArgumentTuple&) { return function_impl_(); }
 | 
						|
 private:
 | 
						|
  FunctionImpl function_impl_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
 | 
						|
template <class Class, typename MethodPtr>
 | 
						|
class InvokeMethodWithoutArgsAction {
 | 
						|
 public:
 | 
						|
  InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
 | 
						|
      : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
 | 
						|
 | 
						|
  template <typename Result, typename ArgumentTuple>
 | 
						|
  Result Perform(const ArgumentTuple&) const {
 | 
						|
    return (obj_ptr_->*method_ptr_)();
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  Class* const obj_ptr_;
 | 
						|
  const MethodPtr method_ptr_;
 | 
						|
};
 | 
						|
 | 
						|
// Implements the IgnoreResult(action) action.
 | 
						|
template <typename A>
 | 
						|
class IgnoreResultAction {
 | 
						|
 public:
 | 
						|
  explicit IgnoreResultAction(const A& action) : action_(action) {}
 | 
						|
 | 
						|
  template <typename F>
 | 
						|
  operator Action<F>() const {
 | 
						|
    // Assert statement belongs here because this is the best place to verify
 | 
						|
    // conditions on F. It produces the clearest error messages
 | 
						|
    // in most compilers.
 | 
						|
    // Impl really belongs in this scope as a local class but can't
 | 
						|
    // because MSVC produces duplicate symbols in different translation units
 | 
						|
    // in this case. Until MS fixes that bug we put Impl into the class scope
 | 
						|
    // and put the typedef both here (for use in assert statement) and
 | 
						|
    // in the Impl class. But both definitions must be the same.
 | 
						|
    typedef typename internal::Function<F>::Result Result;
 | 
						|
 | 
						|
    // Asserts at compile time that F returns void.
 | 
						|
    CompileAssertTypesEqual<void, Result>();
 | 
						|
 | 
						|
    return Action<F>(new Impl<F>(action_));
 | 
						|
  }
 | 
						|
 private:
 | 
						|
  template <typename F>
 | 
						|
  class Impl : public ActionInterface<F> {
 | 
						|
   public:
 | 
						|
    typedef typename internal::Function<F>::Result Result;
 | 
						|
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | 
						|
 | 
						|
    explicit Impl(const A& action) : action_(action) {}
 | 
						|
 | 
						|
    virtual void Perform(const ArgumentTuple& args) {
 | 
						|
      // Performs the action and ignores its result.
 | 
						|
      action_.Perform(args);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    // Type OriginalFunction is the same as F except that its return
 | 
						|
    // type is IgnoredValue.
 | 
						|
    typedef typename internal::Function<F>::MakeResultIgnoredValue
 | 
						|
        OriginalFunction;
 | 
						|
 | 
						|
    const Action<OriginalFunction> action_;
 | 
						|
  };
 | 
						|
 | 
						|
  const A action_;
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
 | 
						|
// An Unused object can be implicitly constructed from ANY value.
 | 
						|
// This is handy when defining actions that ignore some or all of the
 | 
						|
// mock function arguments.  For example, given
 | 
						|
//
 | 
						|
//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
 | 
						|
//   MOCK_METHOD3(Bar, double(int index, double x, double y));
 | 
						|
//
 | 
						|
// instead of
 | 
						|
//
 | 
						|
//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
 | 
						|
//     return sqrt(x*x + y*y);
 | 
						|
//   }
 | 
						|
//   double DistanceToOriginWithIndex(int index, double x, double y) {
 | 
						|
//     return sqrt(x*x + y*y);
 | 
						|
//   }
 | 
						|
//   ...
 | 
						|
//   EXEPCT_CALL(mock, Foo("abc", _, _))
 | 
						|
//       .WillOnce(Invoke(DistanceToOriginWithLabel));
 | 
						|
//   EXEPCT_CALL(mock, Bar(5, _, _))
 | 
						|
//       .WillOnce(Invoke(DistanceToOriginWithIndex));
 | 
						|
//
 | 
						|
// you could write
 | 
						|
//
 | 
						|
//   // We can declare any uninteresting argument as Unused.
 | 
						|
//   double DistanceToOrigin(Unused, double x, double y) {
 | 
						|
//     return sqrt(x*x + y*y);
 | 
						|
//   }
 | 
						|
//   ...
 | 
						|
//   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
 | 
						|
//   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
 | 
						|
typedef internal::IgnoredValue Unused;
 | 
						|
 | 
						|
// This constructor allows us to turn an Action<From> object into an
 | 
						|
// Action<To>, as long as To's arguments can be implicitly converted
 | 
						|
// to From's and From's return type cann be implicitly converted to
 | 
						|
// To's.
 | 
						|
template <typename To>
 | 
						|
template <typename From>
 | 
						|
Action<To>::Action(const Action<From>& from)
 | 
						|
    : impl_(new internal::ActionAdaptor<To, From>(from)) {}
 | 
						|
 | 
						|
// Creates an action that returns 'value'.  'value' is passed by value
 | 
						|
// instead of const reference - otherwise Return("string literal")
 | 
						|
// will trigger a compiler error about using array as initializer.
 | 
						|
template <typename R>
 | 
						|
internal::ReturnAction<R> Return(R value) {
 | 
						|
  return internal::ReturnAction<R>(value);
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns NULL.
 | 
						|
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
 | 
						|
  return MakePolymorphicAction(internal::ReturnNullAction());
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns from a void function.
 | 
						|
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
 | 
						|
  return MakePolymorphicAction(internal::ReturnVoidAction());
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that returns the reference to a variable.
 | 
						|
template <typename R>
 | 
						|
inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
 | 
						|
  return internal::ReturnRefAction<R>(x);
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that does the default action for the give mock function.
 | 
						|
inline internal::DoDefaultAction DoDefault() {
 | 
						|
  return internal::DoDefaultAction();
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that sets the variable pointed by the N-th
 | 
						|
// (0-based) function argument to 'value'.
 | 
						|
template <size_t N, typename T>
 | 
						|
PolymorphicAction<
 | 
						|
  internal::SetArgumentPointeeAction<
 | 
						|
    N, T, internal::IsAProtocolMessage<T>::value> >
 | 
						|
SetArgumentPointee(const T& x) {
 | 
						|
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
 | 
						|
      N, T, internal::IsAProtocolMessage<T>::value>(x));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that sets the elements of the array pointed to by the N-th
 | 
						|
// (0-based) function argument, which can be either a pointer or an iterator,
 | 
						|
// to the values of the elements in the source range [first, last).
 | 
						|
template <size_t N, typename InputIterator>
 | 
						|
PolymorphicAction<internal::SetArrayArgumentAction<N, InputIterator> >
 | 
						|
SetArrayArgument(InputIterator first, InputIterator last) {
 | 
						|
  return MakePolymorphicAction(internal::SetArrayArgumentAction<
 | 
						|
      N, InputIterator>(first, last));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that sets a pointer referent to a given value.
 | 
						|
template <typename T1, typename T2>
 | 
						|
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
 | 
						|
  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
 | 
						|
}
 | 
						|
 | 
						|
#ifndef _WIN32_WCE
 | 
						|
 | 
						|
// Creates an action that sets errno and returns the appropriate error.
 | 
						|
template <typename T>
 | 
						|
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
 | 
						|
SetErrnoAndReturn(int errval, T result) {
 | 
						|
  return MakePolymorphicAction(
 | 
						|
      internal::SetErrnoAndReturnAction<T>(errval, result));
 | 
						|
}
 | 
						|
 | 
						|
#endif  // _WIN32_WCE
 | 
						|
 | 
						|
// Various overloads for InvokeWithoutArgs().
 | 
						|
 | 
						|
// Creates an action that invokes 'function_impl' with no argument.
 | 
						|
template <typename FunctionImpl>
 | 
						|
PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
 | 
						|
InvokeWithoutArgs(FunctionImpl function_impl) {
 | 
						|
  return MakePolymorphicAction(
 | 
						|
      internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that invokes the given method on the given object
 | 
						|
// with no argument.
 | 
						|
template <class Class, typename MethodPtr>
 | 
						|
PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
 | 
						|
InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
 | 
						|
  return MakePolymorphicAction(
 | 
						|
      internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
 | 
						|
          obj_ptr, method_ptr));
 | 
						|
}
 | 
						|
 | 
						|
// Creates an action that performs an_action and throws away its
 | 
						|
// result.  In other words, it changes the return type of an_action to
 | 
						|
// void.  an_action MUST NOT return void, or the code won't compile.
 | 
						|
template <typename A>
 | 
						|
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
 | 
						|
  return internal::IgnoreResultAction<A>(an_action);
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace testing
 | 
						|
 | 
						|
#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 |