Adds matchers UnorderedElementsAre[Array]() (by Billy Donahue); pulls in

gtest r660.
This commit is contained in:
zhanyong.wan
2013-07-28 08:24:00 +00:00
parent 2989703ed8
commit fb25d53911
7 changed files with 1668 additions and 609 deletions

View File

@@ -37,6 +37,7 @@
#include "gmock/gmock-more-matchers.h"
#include <string.h>
#include <time.h>
#include <deque>
#include <functional>
#include <iostream>
@@ -134,11 +135,14 @@ using testing::WhenSorted;
using testing::WhenSortedBy;
using testing::_;
using testing::internal::DummyMatchResultListener;
using testing::internal::ElementMatcherPair;
using testing::internal::ElementMatcherPairs;
using testing::internal::ExplainMatchFailureTupleTo;
using testing::internal::FloatingEqMatcher;
using testing::internal::FormatMatcherDescription;
using testing::internal::IsReadableTypeName;
using testing::internal::JoinAsTuple;
using testing::internal::MatchMatrix;
using testing::internal::RE;
using testing::internal::StreamMatchResultListener;
using testing::internal::StringMatchResultListener;
@@ -147,6 +151,9 @@ using testing::internal::linked_ptr;
using testing::internal::scoped_ptr;
using testing::internal::string;
// Evaluates to the number of elements in 'array'.
#define GMOCK_ARRAY_SIZE_(array) (sizeof(array) / sizeof(array[0]))
// For testing ExplainMatchResultTo().
class GreaterThanMatcher : public MatcherInterface<int> {
public:
@@ -4429,13 +4436,439 @@ TEST(WhenSortedTest, WorksForStreamlike) {
}
TEST(WhenSortedTest, WorksForVectorConstRefMatcherOnStreamlike) {
const int a[5] = { 2, 1, 4, 5, 3 };
Streamlike<int> s(a, a + 5);
const int a[] = { 2, 1, 4, 5, 3 };
Streamlike<int> s(a, a + GMOCK_ARRAY_SIZE_(a));
Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2, 3, 4, 5);
EXPECT_THAT(s, WhenSorted(vector_match));
EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3))));
}
// Tests for UnorderedElementsAreArray()
TEST(UnorderedElementsAreArrayTest, SucceedsWhenExpected) {
const int a[] = { 0, 1, 2, 3, 4 };
std::vector<int> s(a, a + GMOCK_ARRAY_SIZE_(a));
do {
StringMatchResultListener listener;
EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(a),
s, &listener)) << listener.str();
} while (std::next_permutation(s.begin(), s.end()));
}
TEST(UnorderedElementsAreArrayTest, VectorBool) {
const bool a[] = { 0, 1, 0, 1, 1 };
const bool b[] = { 1, 0, 1, 1, 0 };
std::vector<bool> expected(a, a + GMOCK_ARRAY_SIZE_(a));
std::vector<bool> actual(b, b + GMOCK_ARRAY_SIZE_(b));
StringMatchResultListener listener;
EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(expected),
actual, &listener)) << listener.str();
}
class UnorderedElementsAreTest : public testing::Test {
protected:
typedef std::vector<int> IntVec;
};
TEST_F(UnorderedElementsAreTest, SucceedsWhenExpected) {
const int a[] = { 1, 2, 3 };
std::vector<int> s(a, a + GMOCK_ARRAY_SIZE_(a));
do {
StringMatchResultListener listener;
EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3),
s, &listener)) << listener.str();
} while (std::next_permutation(s.begin(), s.end()));
}
TEST_F(UnorderedElementsAreTest, FailsWhenAnElementMatchesNoMatcher) {
const int a[] = { 1, 2, 3 };
std::vector<int> s(a, a + GMOCK_ARRAY_SIZE_(a));
std::vector<Matcher<int> > mv;
mv.push_back(1);
mv.push_back(2);
mv.push_back(2);
// The element with value '3' matches nothing: fail fast.
StringMatchResultListener listener;
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAreArray(mv),
s, &listener)) << listener.str();
}
// One naive implementation of the matcher runs in O(N!) time, which is too
// slow for many real-world inputs. This test shows that our matcher can match
// 100 inputs very quickly (a few milliseconds). An O(100!) is 10^158
// iterations and obviously effectively incomputable.
// [ RUN ] UnorderedElementsAreTest.Performance
// [ OK ] UnorderedElementsAreTest.Performance (4 ms)
TEST_F(UnorderedElementsAreTest, Performance) {
std::vector<int> s;
std::vector<Matcher<int> > mv;
for (int i = 0; i < 100; ++i) {
s.push_back(i);
mv.push_back(_);
}
mv[50] = Eq(0);
StringMatchResultListener listener;
EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv),
s, &listener)) << listener.str();
}
// Another variant of 'Performance' with similar expectations.
// [ RUN ] UnorderedElementsAreTest.PerformanceHalfStrict
// [ OK ] UnorderedElementsAreTest.PerformanceHalfStrict (4 ms)
TEST_F(UnorderedElementsAreTest, PerformanceHalfStrict) {
std::vector<int> s;
std::vector<Matcher<int> > mv;
for (int i = 0; i < 100; ++i) {
s.push_back(i);
if (i & 1) {
mv.push_back(_);
} else {
mv.push_back(i);
}
}
StringMatchResultListener listener;
EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv),
s, &listener)) << listener.str();
}
TEST_F(UnorderedElementsAreTest, FailMessageCountWrong) {
std::vector<int> v;
v.push_back(4);
StringMatchResultListener listener;
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3),
v, &listener)) << listener.str();
EXPECT_THAT(listener.str(), Eq("which has 1 element"));
}
TEST_F(UnorderedElementsAreTest, FailMessageCountWrongZero) {
std::vector<int> v;
StringMatchResultListener listener;
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3),
v, &listener)) << listener.str();
EXPECT_THAT(listener.str(), Eq(""));
}
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatchers) {
std::vector<int> v;
v.push_back(1);
v.push_back(1);
StringMatchResultListener listener;
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2),
v, &listener)) << listener.str();
EXPECT_THAT(
listener.str(),
Eq("where the following matchers don't match any elements:\n"
"matcher #1: is equal to 2"));
}
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedElements) {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
StringMatchResultListener listener;
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 1),
v, &listener)) << listener.str();
EXPECT_THAT(
listener.str(),
Eq("where the following elements don't match any matchers:\n"
"element #1: 2"));
}
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatcherAndElement) {
std::vector<int> v;
v.push_back(2);
v.push_back(3);
StringMatchResultListener listener;
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2),
v, &listener)) << listener.str();
EXPECT_THAT(
listener.str(),
Eq("where"
" the following matchers don't match any elements:\n"
"matcher #0: is equal to 1\n"
"and"
" where"
" the following elements don't match any matchers:\n"
"element #1: 3"));
}
// Test helper for formatting element, matcher index pairs in expectations.
static string EMString(int element, int matcher) {
stringstream ss;
ss << "(element #" << element << ", matcher #" << matcher << ")";
return ss.str();
}
TEST_F(UnorderedElementsAreTest, FailMessageImperfectMatchOnly) {
// A situation where all elements and matchers have a match
// associated with them, but the max matching is not perfect.
std::vector<string> v;
v.push_back("a");
v.push_back("b");
v.push_back("c");
StringMatchResultListener listener;
EXPECT_FALSE(ExplainMatchResult(
UnorderedElementsAre("a", "a", AnyOf("b", "c")), v, &listener))
<< listener.str();
string prefix =
"where no permutation of the elements can satisfy all matchers, "
"and the closest match is 2 of 3 matchers with the "
"pairings:\n";
// We have to be a bit loose here, because there are 4 valid max matches.
EXPECT_THAT(
listener.str(),
AnyOf(prefix + "{\n " + EMString(0, 0) +
",\n " + EMString(1, 2) + "\n}",
prefix + "{\n " + EMString(0, 1) +
",\n " + EMString(1, 2) + "\n}",
prefix + "{\n " + EMString(0, 0) +
",\n " + EMString(2, 2) + "\n}",
prefix + "{\n " + EMString(0, 1) +
",\n " + EMString(2, 2) + "\n}"));
}
TEST_F(UnorderedElementsAreTest, Describe) {
EXPECT_THAT(Describe<IntVec>(UnorderedElementsAre()),
Eq("is empty"));
EXPECT_THAT(
Describe<IntVec>(UnorderedElementsAre(345)),
Eq("has 1 element and that element is equal to 345"));
EXPECT_THAT(
Describe<IntVec>(UnorderedElementsAre(111, 222, 333)),
Eq("has 3 elements and there exists some permutation "
"of elements such that:\n"
" - element #0 is equal to 111, and\n"
" - element #1 is equal to 222, and\n"
" - element #2 is equal to 333"));
}
TEST_F(UnorderedElementsAreTest, DescribeNegation) {
EXPECT_THAT(DescribeNegation<IntVec>(UnorderedElementsAre()),
Eq("isn't empty"));
EXPECT_THAT(
DescribeNegation<IntVec>(UnorderedElementsAre(345)),
Eq("doesn't have 1 element, or has 1 element that isn't equal to 345"));
EXPECT_THAT(
DescribeNegation<IntVec>(UnorderedElementsAre(123, 234, 345)),
Eq("doesn't have 3 elements, or there exists no permutation "
"of elements such that:\n"
" - element #0 is equal to 123, and\n"
" - element #1 is equal to 234, and\n"
" - element #2 is equal to 345"));
}
namespace {
// Used as a check on the more complex max flow method used in the
// real testing::internal::FindMaxBipartiteMatching. This method is
// compatible but runs in worst-case factorial time, so we only
// use it in testing for small problem sizes.
template <typename Graph>
class BacktrackingMaxBPMState {
public:
// Does not take ownership of 'g'.
explicit BacktrackingMaxBPMState(const Graph* g) : graph_(g) { }
ElementMatcherPairs Compute() {
if (graph_->LhsSize() == 0 || graph_->RhsSize() == 0) {
return best_so_far_;
}
lhs_used_.assign(graph_->LhsSize(), kUnused);
rhs_used_.assign(graph_->RhsSize(), kUnused);
for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
matches_.clear();
RecurseInto(irhs);
if (best_so_far_.size() == graph_->RhsSize())
break;
}
return best_so_far_;
}
private:
static const size_t kUnused = static_cast<size_t>(-1);
void PushMatch(size_t lhs, size_t rhs) {
matches_.push_back(ElementMatcherPair(lhs, rhs));
lhs_used_[lhs] = rhs;
rhs_used_[rhs] = lhs;
if (matches_.size() > best_so_far_.size()) {
best_so_far_ = matches_;
}
}
void PopMatch() {
const ElementMatcherPair& back = matches_.back();
lhs_used_[back.first] = kUnused;
rhs_used_[back.second] = kUnused;
matches_.pop_back();
}
bool RecurseInto(size_t irhs) {
if (rhs_used_[irhs] != kUnused) {
return true;
}
for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
if (lhs_used_[ilhs] != kUnused) {
continue;
}
if (!graph_->HasEdge(ilhs, irhs)) {
continue;
}
PushMatch(ilhs, irhs);
if (best_so_far_.size() == graph_->RhsSize()) {
return false;
}
for (size_t mi = irhs + 1; mi < graph_->RhsSize(); ++mi) {
if (!RecurseInto(mi)) return false;
}
PopMatch();
}
return true;
}
const Graph* graph_; // not owned
std::vector<size_t> lhs_used_;
std::vector<size_t> rhs_used_;
ElementMatcherPairs matches_;
ElementMatcherPairs best_so_far_;
};
template <typename Graph>
const size_t BacktrackingMaxBPMState<Graph>::kUnused;
} // namespace
// Implement a simple backtracking algorithm to determine if it is possible
// to find one element per matcher, without reusing elements.
template <typename Graph>
ElementMatcherPairs
FindBacktrackingMaxBPM(const Graph& g) {
return BacktrackingMaxBPMState<Graph>(&g).Compute();
}
class BacktrackingBPMTest : public ::testing::Test { };
// Tests the MaxBipartiteMatching algorithm with square matrices.
// The single int param is the # of nodes on each of the left and right sides.
class BipartiteTest : public ::testing::TestWithParam<int> { };
// Verify all match graphs up to some moderate number of edges.
TEST_P(BipartiteTest, Exhaustive) {
int nodes = GetParam();
MatchMatrix graph(nodes, nodes);
do {
ElementMatcherPairs matches =
internal::FindMaxBipartiteMatching(graph);
EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), matches.size())
<< "graph: " << graph.DebugString();
// Check that all elements of matches are in the graph.
// Check that elements of first and second are unique.
std::vector<bool> seen_element(graph.LhsSize());
std::vector<bool> seen_matcher(graph.RhsSize());
SCOPED_TRACE(PrintToString(matches));
for (size_t i = 0; i < matches.size(); ++i) {
size_t ilhs = matches[i].first;
size_t irhs = matches[i].second;
EXPECT_TRUE(graph.HasEdge(ilhs, irhs));
EXPECT_FALSE(seen_element[ilhs]);
EXPECT_FALSE(seen_matcher[irhs]);
seen_element[ilhs] = true;
seen_matcher[irhs] = true;
}
} while (graph.NextGraph());
}
INSTANTIATE_TEST_CASE_P(AllGraphs, BipartiteTest,
::testing::Range(0, 5));
// Parameterized by a pair interpreted as (LhsSize, RhsSize).
class BipartiteNonSquareTest
: public ::testing::TestWithParam<std::pair<size_t, size_t> > {
};
TEST_F(BipartiteNonSquareTest, SimpleBacktracking) {
// .......
// 0:-----\ :
// 1:---\ | :
// 2:---\ | :
// 3:-\ | | :
// :.......:
// 0 1 2
MatchMatrix g(4, 3);
static const int kEdges[][2] = { {0, 2}, {1, 1}, {2, 1}, {3, 0} };
for (size_t i = 0; i < GMOCK_ARRAY_SIZE_(kEdges); ++i) {
g.SetEdge(kEdges[i][0], kEdges[i][1], true);
}
EXPECT_THAT(FindBacktrackingMaxBPM(g),
ElementsAre(Pair(3, 0),
Pair(AnyOf(1, 2), 1),
Pair(0, 2))) << g.DebugString();
}
// Verify a few nonsquare matrices.
TEST_P(BipartiteNonSquareTest, Exhaustive) {
size_t nlhs = GetParam().first;
size_t nrhs = GetParam().second;
MatchMatrix graph(nlhs, nrhs);
do {
EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(),
internal::FindMaxBipartiteMatching(graph).size())
<< "graph: " << graph.DebugString()
<< "\nbacktracking: "
<< PrintToString(FindBacktrackingMaxBPM(graph))
<< "\nmax flow: "
<< PrintToString(internal::FindMaxBipartiteMatching(graph));
} while (graph.NextGraph());
}
INSTANTIATE_TEST_CASE_P(AllGraphs, BipartiteNonSquareTest,
testing::Values(
std::make_pair(1, 2),
std::make_pair(2, 1),
std::make_pair(3, 2),
std::make_pair(2, 3),
std::make_pair(4, 1),
std::make_pair(1, 4),
std::make_pair(4, 3),
std::make_pair(3, 4)));
class BipartiteRandomTest
: public ::testing::TestWithParam<std::pair<int, int> > {
};
// Verifies a large sample of larger graphs.
TEST_P(BipartiteRandomTest, LargerNets) {
int nodes = GetParam().first;
int iters = GetParam().second;
MatchMatrix graph(nodes, nodes);
testing::internal::Int32 seed = GTEST_FLAG(random_seed);
if (seed == 0) {
seed = static_cast<testing::internal::Int32>(time(NULL));
}
for (; iters > 0; --iters, ++seed) {
srand(static_cast<int>(seed));
graph.Randomize();
EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(),
internal::FindMaxBipartiteMatching(graph).size())
<< " graph: " << graph.DebugString()
<< "\nTo reproduce the failure, rerun the test with the flag"
" --" << GTEST_FLAG_PREFIX_ << "random_seed=" << seed;
}
}
// Test argument is a std::pair<int, int> representing (nodes, iters).
INSTANTIATE_TEST_CASE_P(Samples, BipartiteRandomTest,
testing::Values(
std::make_pair(5, 10000),
std::make_pair(6, 5000),
std::make_pair(7, 2000),
std::make_pair(8, 500),
std::make_pair(9, 100)));
// Tests IsReadableTypeName().
TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) {