Makes List a random-access data structure. This simplifies the implementation and makes it easier to implement test shuffling.

This commit is contained in:
zhanyong.wan
2009-07-01 22:55:05 +00:00
parent b2db677c99
commit 600105ee3a
7 changed files with 325 additions and 440 deletions

View File

@@ -49,7 +49,8 @@
#include <errno.h>
#endif // !_WIN32_WCE
#include <stddef.h>
#include <stdlib.h> // For strtoll/_strtoul64.
#include <stdlib.h> // For strtoll/_strtoul64/malloc/free.
#include <string.h> // For memmove.
#include <string>
@@ -198,199 +199,74 @@ Int32 Int32FromEnvOrDie(const char* env_var, Int32 default_val);
// method. Assumes that 0 <= shard_index < total_shards.
bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id);
// List is a simple singly-linked list container.
// List is an ordered container that supports random access to the
// elements.
//
// We cannot use std::list as Microsoft's implementation of STL has
// problems when exception is disabled. There is a hack to work
// around this, but we've seen cases where the hack fails to work.
// We cannot use std::vector, as Visual C++ 7.1's implementation of
// STL has problems compiling when exceptions are disabled. There is
// a hack to work around the problems, but we've seen cases where the
// hack fails to work.
//
// TODO(wan): switch to std::list when we have a reliable fix for the
// STL problem, e.g. when we upgrade to the next version of Visual
// C++, or (more likely) switch to STLport.
//
// The element type must support copy constructor.
// Forward declare List
template <typename E> // E is the element type.
class List;
// ListNode is a node in a singly-linked list. It consists of an
// element and a pointer to the next node. The last node in the list
// has a NULL value for its next pointer.
template <typename E> // E is the element type.
class ListNode {
friend class List<E>;
private:
E element_;
ListNode * next_;
// The c'tor is private s.t. only in the ListNode class and in its
// friend class List we can create a ListNode object.
//
// Creates a node with a given element value. The next pointer is
// set to NULL.
//
// ListNode does NOT have a default constructor. Always use this
// constructor (with parameter) to create a ListNode object.
explicit ListNode(const E & element) : element_(element), next_(NULL) {}
// We disallow copying ListNode
GTEST_DISALLOW_COPY_AND_ASSIGN_(ListNode);
public:
// Gets the element in this node.
E & element() { return element_; }
const E & element() const { return element_; }
// Gets the next node in the list.
ListNode * next() { return next_; }
const ListNode * next() const { return next_; }
};
// List is a simple singly-linked list container.
// The element type must support copy constructor and operator=.
template <typename E> // E is the element type.
class List {
public:
// Creates an empty list.
List() : head_(NULL), last_(NULL), size_(0),
last_read_index_(-1), last_read_(NULL) {}
List() : elements_(NULL), capacity_(0), size_(0) {}
// D'tor.
virtual ~List();
virtual ~List() { Clear(); }
// Clears the list.
void Clear() {
if ( size_ > 0 ) {
// 1. Deletes every node.
ListNode<E> * node = head_;
ListNode<E> * next = node->next();
for ( ; ; ) {
delete node;
node = next;
if ( node == NULL ) break;
next = node->next();
if (elements_ != NULL) {
for (int i = 0; i < size_; i++) {
delete elements_[i];
}
// 2. Resets the member variables.
last_read_ = head_ = last_ = NULL;
size_ = 0;
last_read_index_ = -1;
free(elements_);
elements_ = NULL;
capacity_ = size_ = 0;
}
}
// Gets the number of elements.
int size() const { return size_; }
// Returns true if the list is empty.
bool IsEmpty() const { return size() == 0; }
// Gets the first element of the list, or NULL if the list is empty.
ListNode<E> * Head() { return head_; }
const ListNode<E> * Head() const { return head_; }
// Gets the last element of the list, or NULL if the list is empty.
ListNode<E> * Last() { return last_; }
const ListNode<E> * Last() const { return last_; }
// Adds an element to the end of the list. A copy of the element is
// created using the copy constructor, and then stored in the list.
// Changes made to the element in the list doesn't affect the source
// object, and vice versa. This does not affect the "last read"
// index.
void PushBack(const E & element) {
ListNode<E> * new_node = new ListNode<E>(element);
// object, and vice versa.
void PushBack(const E & element) { Insert(element, size_); }
if ( size_ == 0 ) {
head_ = last_ = new_node;
size_ = 1;
} else {
last_->next_ = new_node;
last_ = new_node;
size_++;
}
}
// Adds an element to the beginning of this list. The "last read"
// index is adjusted accordingly.
void PushFront(const E& element) {
ListNode<E>* const new_node = new ListNode<E>(element);
if ( size_ == 0 ) {
head_ = last_ = new_node;
size_ = 1;
} else {
new_node->next_ = head_;
head_ = new_node;
size_++;
}
if (last_read_index_ >= 0) {
// A new element at the head bumps up an existing index by 1.
last_read_index_++;
}
}
// Adds an element to the beginning of this list.
void PushFront(const E& element) { Insert(element, 0); }
// Removes an element from the beginning of this list. If the
// result argument is not NULL, the removed element is stored in the
// memory it points to. Otherwise the element is thrown away.
// Returns true iff the list wasn't empty before the operation. The
// "last read" index is adjusted accordingly.
// Returns true iff the list wasn't empty before the operation.
bool PopFront(E* result) {
if (size_ == 0) return false;
if (size_ == 0)
return false;
if (result != NULL) {
*result = head_->element_;
}
if (result != NULL)
*result = *(elements_[0]);
ListNode<E>* const old_head = head_;
delete elements_[0];
size_--;
if (size_ == 0) {
head_ = last_ = NULL;
} else {
head_ = head_->next_;
}
delete old_head;
if (last_read_index_ > 0) {
last_read_index_--;
} else if (last_read_index_ == 0) {
last_read_index_ = -1;
last_read_ = NULL;
}
MoveElements(1, size_, 0);
return true;
}
// Inserts an element after a given node in the list. It's the
// caller's responsibility to ensure that the given node is in the
// list. If the given node is NULL, inserts the element at the
// front of the list. The "last read" index is adjusted
// accordingly.
ListNode<E>* InsertAfter(ListNode<E>* node, const E& element) {
if (node == NULL) {
PushFront(element);
return Head();
}
ListNode<E>* const new_node = new ListNode<E>(element);
new_node->next_ = node->next_;
node->next_ = new_node;
// Inserts an element at the given index. It's the caller's
// responsibility to ensure that the given index is in the range [0,
// size()].
void Insert(const E& element, int index) {
GrowIfNeeded();
MoveElements(index, size_ - index, index + 1);
elements_[index] = new E(element);
size_++;
if (node == last_) {
last_ = new_node;
}
// We aren't sure whether this insertion will affect the last read
// index, so we invalidate it to be safe.
last_read_index_ = -1;
last_read_ = NULL;
return new_node;
}
// Returns the number of elements that satisfy a given predicate.
@@ -399,10 +275,8 @@ class List {
template <typename P> // P is the type of the predicate function/functor
int CountIf(P predicate) const {
int count = 0;
for ( const ListNode<E> * node = Head();
node != NULL;
node = node->next() ) {
if ( predicate(node->element()) ) {
for (int i = 0; i < size_; i++) {
if (predicate(*(elements_[i]))) {
count++;
}
}
@@ -416,10 +290,8 @@ class List {
// the elements.
template <typename F> // F is the type of the function/functor
void ForEach(F functor) const {
for ( const ListNode<E> * node = Head();
node != NULL;
node = node->next() ) {
functor(node->element());
for (int i = 0; i < size_; i++) {
functor(*(elements_[i]));
}
}
@@ -428,81 +300,70 @@ class List {
// function/functor that accepts a 'const E &', where E is the
// element type. This method does not change the elements.
template <typename P> // P is the type of the predicate function/functor.
const ListNode<E> * FindIf(P predicate) const {
for ( const ListNode<E> * node = Head();
node != NULL;
node = node->next() ) {
if ( predicate(node->element()) ) {
return node;
const E* FindIf(P predicate) const {
for (int i = 0; i < size_; i++) {
if (predicate(*elements_[i])) {
return elements_[i];
}
}
return NULL;
}
template <typename P>
ListNode<E> * FindIf(P predicate) {
for ( ListNode<E> * node = Head();
node != NULL;
node = node->next() ) {
if ( predicate(node->element() ) ) {
return node;
E* FindIf(P predicate) {
for (int i = 0; i < size_; i++) {
if (predicate(*elements_[i])) {
return elements_[i];
}
}
return NULL;
}
// Returns a pointer to the i-th element of the list, or NULL if i is not
// in range [0, size()). The "last read" index is adjusted accordingly.
const E* GetElement(int i) const {
if (i < 0 || i >= size())
return NULL;
// Returns the i-th element of the list, or aborts the program if i
// is not in range [0, size()).
const E& GetElement(int i) const {
GTEST_CHECK_(0 <= i && i < size_)
<< "Invalid list index " << i << ": must be in range [0, "
<< (size_ - 1) << "].";
if (last_read_index_ < 0 || last_read_index_ > i) {
// We have to count from the start.
last_read_index_ = 0;
last_read_ = Head();
}
while (last_read_index_ < i) {
last_read_ = last_read_->next();
last_read_index_++;
}
return &(last_read_->element());
return *(elements_[i]);
}
// Returns the i-th element of the list, or default_value if i is not
// in range [0, size()). The "last read" index is adjusted accordingly.
// in range [0, size()).
E GetElementOr(int i, E default_value) const {
const E* element = GetElement(i);
return element ? *element : default_value;
return (i < 0 || i >= size_) ? default_value : *(elements_[i]);
}
private:
ListNode<E>* head_; // The first node of the list.
ListNode<E>* last_; // The last node of the list.
int size_; // The number of elements in the list.
// Grows the buffer if it is not big enough to hold one more element.
void GrowIfNeeded() {
if (size_ < capacity_)
return;
// These fields point to the last element read via GetElement(i) or
// GetElementOr(i). They are used to speed up list traversal as
// often they allow us to find the wanted element by looking from
// the last visited one instead of the list head. This means a
// sequential traversal of the list can be done in O(N) time instead
// of O(N^2).
mutable int last_read_index_;
mutable const ListNode<E>* last_read_;
// Exponential bump-up is necessary to ensure that inserting N
// elements is O(N) instead of O(N^2). The factor 3/2 means that
// no more than 1/3 of the slots are wasted.
const int new_capacity = 3*(capacity_/2 + 1);
GTEST_CHECK_(new_capacity > capacity_) // Does the new capacity overflow?
<< "Cannot grow a list with " << capacity_ << " elements already.";
capacity_ = new_capacity;
elements_ = static_cast<E**>(
realloc(elements_, capacity_*sizeof(elements_[0])));
}
// Moves the give consecutive elements to a new index in the list.
void MoveElements(int source, int count, int dest) {
memmove(elements_ + dest, elements_ + source, count*sizeof(elements_[0]));
}
E** elements_;
int capacity_; // The number of elements allocated for elements_.
int size_; // The number of elements; in the range [0, capacity_].
// We disallow copying List.
GTEST_DISALLOW_COPY_AND_ASSIGN_(List);
};
// The virtual destructor of List.
template <typename E>
List<E>::~List() {
Clear();
}
}; // class List
// A function for deleting an object. Handy for being used as a
// functor.
@@ -907,10 +768,8 @@ class UnitTestImpl {
// before main() is reached.
if (original_working_dir_.IsEmpty()) {
original_working_dir_.Set(FilePath::GetCurrentDir());
if (original_working_dir_.IsEmpty()) {
printf("%s\n", "Failed to get the current working directory.");
posix::Abort();
}
GTEST_CHECK_(!original_working_dir_.IsEmpty())
<< "Failed to get the current working directory.";
}
GetTestCase(test_info->test_case_name(),
@@ -1057,8 +916,8 @@ class UnitTestImpl {
bool parameterized_tests_registered_;
#endif // GTEST_HAS_PARAM_TEST
// Points to the last death test case registered. Initially NULL.
internal::ListNode<TestCase*>* last_death_test_case_;
// Index of the last death test case registered. Initially -1.
int last_death_test_case_;
// This points to the TestCase for the currently running test. It
// changes as Google Test goes through one test case after another.